Advertisement

Journal of Endocrinological Investigation

, Volume 42, Issue 11, pp 1257–1272 | Cite as

Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation

  • I. Barchetta
  • F. A. Cimini
  • G. Ciccarelli
  • M. G. BaroniEmail author
  • M. G. CavalloEmail author
Review

Abstract

Adipose tissue (AT) is one of the largest endocrine organs contributing to metabolic homeostasis. The functional pleiotropism of AT depends on its ability to secrete a large number of hormones, cytokines, extracellular matrix proteins and growth factors, all influencing many local and systemic physiological and pathophysiological processes. In condition of chronic positive energy balance, adipocyte expansion, hypoxia, apoptosis and stress all lead to AT inflammation and dysfunction, and it has been demonstrated that this sick fat is a main risk factor for many metabolic disorders, such as type 2 diabetes mellitus, fatty liver, cardiovascular disease and cancer. AT dysfunction is tightly associated with aberrant secretion of bioactive peptides, the adipocytokines, and their blood concentrations often reflect the expression in the AT. Despite the existence of an association between AT dysfunction and systemic pro-inflammatory state, most of the circulating molecules detectable in obese and dysmetabolic individuals do not identify specifically the condition of sick fat. Based on this premise, this review provides a concise overview of “classic” and novel promising adipocytokines associated with AT inflammation and discusses possible critical approaches to their interpretation in clinical practice.

Keywords

Adipose tissue Adipokines Metabolic disease Obesity Visceral fat Inflammation 

Notes

Acknowledgements

Financial support to this work came from Sapienza University of Rome to MG Baroni (grant 2RM11715C3FCB9431) and to MG Cavallo (grant RM1161550687D69B).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Ethical approval

This article does not contain studies with human participants or animals (review).

Informed consent

Not applicable.

References

  1. 1.
    Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556PubMedGoogle Scholar
  2. 2.
    Greenberg AS, Obin MS (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83:461S–465SPubMedGoogle Scholar
  3. 3.
    Matsuzawa Y, Funahashi T, Nakamura T (1999) Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances. Ann N Y Acad Sci 892:146–154PubMedGoogle Scholar
  4. 4.
    Kang YE, Kim JM, Joung KH, Lee JH, You BR, Choi MJ, Ryu MJ, Ko YB, Lee MA, Lee J, Ku BJ, Shong M, Lee KH, Kim HJ (2016) The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLoS One 11:e0154003PubMedPubMedCentralGoogle Scholar
  5. 5.
  6. 6.
    Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91PubMedGoogle Scholar
  7. 7.
    Beutler B, Cerami A (1989) The biology of cachectin/TNF—a primary mediator of the host response. Annu Rev Immunol 7:625–655PubMedGoogle Scholar
  8. 8.
    Vassalli P (1992) The pathophysiology of tumor necrosis factors. Annu Rev Immunol 10:411–452PubMedGoogle Scholar
  9. 9.
    Hotamisligil GS (1999) Mechanisms of TNF-alpha-induced insulin resistance. Exp Clin Endocrinol Diabetes 107:119–125PubMedGoogle Scholar
  10. 10.
    Dorhoi A, Kaufmann SH (2014) Tumor necrosis factor alpha in mycobacterial infection. Semin Immunol 26:203–209PubMedGoogle Scholar
  11. 11.
    Tracey KJ, Lowry SF, Cerami A (1988) Cachetin/TNF-alpha in septic shock and septic adult respiratory distress syndrome. Am Rev Respir Dis 138:1377–1379PubMedGoogle Scholar
  12. 12.
    Fragoso JM, Vargas Alarcón G, Jiménez Morales S, Reyes Hernández OD, Ramírez Bello J (2014) Tumor necrosis factor alpha (TNF-α) in autoimmune diseases (AIDs):molecular biology and genetics. Gac Med Mex 150:334–344PubMedGoogle Scholar
  13. 13.
    Maini RN, Brennan FM, Williams R, Chu CQ, Cope AP, Gibbons D, Elliott M, Feldmann M (1993) TNF-alpha in rheumatoid arthritis and prospects of anti-TNF therapy. Clin Exp Rheumatol 11:S173–S175PubMedGoogle Scholar
  14. 14.
    Victor FC, Gottlieb AB (2002) TNF-alpha and apoptosis: implications for the pathogenesis and treatment of psoriasis. J Drugs Dermatol 1:264–275PubMedGoogle Scholar
  15. 15.
    Balkwill F (2006) TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev 25:409–416PubMedGoogle Scholar
  16. 16.
    Piccioli P, Rubartelli A (2013) The secretion of IL-1β and options for release. Semin Immunol 25:425–429PubMedGoogle Scholar
  17. 17.
    Dinarello CA, van der Meer JW (2013) Treating inflammation by blocking interleukin-1 in humans. Semin Immunol 25:469–484PubMedPubMedCentralGoogle Scholar
  18. 18.
    Banerjee M, Saxena M (2012) Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clin Chim Acta 413:1163–1170PubMedGoogle Scholar
  19. 19.
    Bendtzen K, Mandrup-Poulsen T, Nerup J, Nielsen JH, Dinarello CA, Svenson M (1986) Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science 232:1545–1547PubMedGoogle Scholar
  20. 20.
    Nagareddy PR, Kraakman M, Masters SL, Stirzaker RA, Gorman DJ, Grant RW, Dragoljevic D, Hong ES, Abdel-Latif A, Smyth SS, Choi SH, Korner J, Bornfeldt KE, Fisher EA, Dixit VD, Tall AR, Goldberg IJ, Murphy AJ (2014) Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab 19:821–835PubMedPubMedCentralGoogle Scholar
  21. 21.
    Gabay C, Lamacchia C, Palmer G (2010) IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 6:232–241PubMedGoogle Scholar
  22. 22.
    Sheedy FJ, Moore KJ (2013) IL-1 signaling in atherosclerosis: sibling rivalry. Nat Immunol 14:1030–1032PubMedGoogle Scholar
  23. 23.
    Lane T, Lachmann HJ (2011) The emerging role of interleukin-1β in autoinflammatory diseases. Curr Allergy Asthma Rep 11:361–368PubMedGoogle Scholar
  24. 24.
    Simi A, Lerouet D, Pinteaux E, Brough D (2007) Mechanisms of regulation for interleukin-1beta in neurodegenerative disease. Neuropharmacology 52:1563–1569PubMedGoogle Scholar
  25. 25.
    Szabo G, Petrasek J (2015) Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol 12:387–400PubMedGoogle Scholar
  26. 26.
    Akira S, Taga T, Kishimoto T (1993) Interleukin-6 in biology and medicine. Adv Immunol 54:1–78PubMedGoogle Scholar
  27. 27.
    Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6:a016295PubMedPubMedCentralGoogle Scholar
  28. 28.
    Kraakman MJ, Kammoun HL, Allen TL, Deswaerte V, Henstridge DC, Estevez E, Matthews VB, Neill B, White DA, Murphy AJ, Peijs L, Yang C, Risis S, Bruce CR, Du XJ, Bobik A, Lee-Young RS, Kingwell BA, Vasanthakumar A, Shi W, Kallies A, Lancaster GI, Rose-John S, Febbraio MA (2016) Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab 23:563Google Scholar
  29. 29.
    Sindhu S, Thomas R, Shihab P, Sriraman D, Behbehani K, Ahmad R (2015) Obesity is a positive modulator of IL-6R and IL-6 expression in the subcutaneous adipose tissue: significance for metabolic inflammation. PLoS One 10:e0133494PubMedPubMedCentralGoogle Scholar
  30. 30.
    Schmidt-Arras D, Rose-John S (2016) IL-6 pathway in the liver: from physiopathology to therapy. J Hepatol 64:1403–1415PubMedGoogle Scholar
  31. 31.
    Ngwa DN, Agrawal A (2019) Structure-function relationships of C-reactive protein in bacterial infection. Front Immunol 10:166PubMedPubMedCentralGoogle Scholar
  32. 32.
    Sproston NR, Ashworth JJ (2018) Role of C-reactive protein at sites of inflammation and infection. Front Immunol 13(9):754Google Scholar
  33. 33.
    Yang BY, Markevych I, Harris C, Standl M, Schikowski T, Koletzko S, Herberth G, Bauer CP, von Berg A, Berdel D, Dong GH, Heinrich J (2019) High-sensitivity C-reactive protein and allergic endpoints in german adolescents. Int Arch Allergy Immunol 3:1–6Google Scholar
  34. 34.
    Butland BK, Strachan DP, Rudnicka AR (2008) C-reactive protein, obesity, atopy and asthma symptoms in middle-aged adults. Eur Respir J 32(1):77–84PubMedGoogle Scholar
  35. 35.
    Ford ES (2003) Asthma, body mass index, and C-reactive protein among US adults. J Asthma 40(7):733–739PubMedGoogle Scholar
  36. 36.
    Atzeni F, Talotta R, Masala IF, Bongiovanni S, Boccassini L, Sarzi-Puttini P (2017) Biomarkers in Rheumatoid Arthritis. Isr Med Assoc J. 19(8):512–516PubMedGoogle Scholar
  37. 37.
    Beygi S, Lajevardi V, Abedini R (2014) C-reactive protein in psoriasis: a review of the literature. J Eur Acad Dermatol Venereol 28(6):700–711PubMedGoogle Scholar
  38. 38.
    Batuca J, Delgado Alves J (2009) C-reactive protein in systemic lupus erythematosus. Autoimmunity 42(4):282–285PubMedGoogle Scholar
  39. 39.
    Du Clos TW, Mold C (2004) C-reactive protein: an activator of innate immunity and a modulator of adaptive immunity. Immunol Res 30(3):261–277PubMedGoogle Scholar
  40. 40.
    The Emerging Risk Factors Collaboration (2010) C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375:132–140PubMedCentralGoogle Scholar
  41. 41.
    Brooks GC, Blaha MJ, Blumenthal RS (2010) Relation of C-reactive protein to abdominal adiposity. Am J Cardiol 106:56–61PubMedGoogle Scholar
  42. 42.
    Lazarou C, Panagiotakos DB, Chrysohoou C (2010) C-reactive protein levels are associated with adiposity and a high inflammatory foods index in mountainous Cypriot children. Clin Nutr 29:779–783PubMedGoogle Scholar
  43. 43.
    Wu DM, Chu NF, Shen MH (2003) Plasma C-reactive protein levels and their relationship to anthropometric and lipid characteristics among children. J Clin Epidemiol 56:94–100PubMedGoogle Scholar
  44. 44.
    Vikram NK, Misra A, Dwivedi M (2003) Correlations of C-reactive protein levels with anthropometric profile, percentage of body fat and lipids in healthy adolescents and young adults in urban North India. Atherosclerosis 168:305–313PubMedGoogle Scholar
  45. 45.
    Nakamura H, Ito H, Egami Y (2008) Waist circumference is the main determinant of elevated C-reactive protein in metabolic syndrome. Diabetes Res Clin Pract 79:330–336PubMedGoogle Scholar
  46. 46.
    Panagiotakos DB, Pitsavos C, Yannakoulia M (2005) The implication of obesity and central fat on markers of chronic inflammation: the ATTICA study. Atherosclerosis 183:308–315PubMedGoogle Scholar
  47. 47.
    Bochud M, Marquant F, Marques-Vidal P-M (2009) Association between C-Reactive protein and adiposity in women. J Clin Endocrinol Metab 94:3969–3977PubMedGoogle Scholar
  48. 48.
    Wee CC, Mukamal KJ, Huang A (2008) Obesity and C-reactive protein levels among White, Black, and Hispanic US adults. Obesity (Silver Spring) 16:875–880Google Scholar
  49. 49.
    Gentile M, Panico S, Rubba F (2010) Obesity, overweight, and weight gain over adult life are main determinants of elevated hs-CRP in a cohort of Mediterranean women. Eur J Clin Nutr 64:873–878PubMedGoogle Scholar
  50. 50.
    Aronson D, Bartha P, Zinder O (2004) Obesity is the major determinant of elevated C-reactive protein in subjects with the metabolic syndrome. Int J Obes 28:674–679Google Scholar
  51. 51.
    Assoumou HGN, Barthelemy JC, Garet M (2011) Increased waist circumference is the component of metabolic syndrome the most strongly associated with elevated C-Reactive protein in elderly. Metab Syndr Relat Disord 9:281–285PubMedGoogle Scholar
  52. 52.
    Connelly PW, Hanley AJ, Harris SB (2003) Relation of waist circumference and glycemic status to C-reactive protein in the Sandy Lake Oji-Cree. Int J Obes 27:347–354Google Scholar
  53. 53.
    Frohlich M, Imhof A, Berg G (2000) Association between C-reactive protein and features of the metabolic syndrome. Diabetes Care 23:1835–1839PubMedGoogle Scholar
  54. 54.
    Garcia-Lorda P, Bullo M, Balanza R (2006) C-reactive protein, adiposity and cardiovascular risk factors in a Mediterranean popu- lation. Int J Obes 30:468–474Google Scholar
  55. 55.
    Hak AE, Stehouwer CD, Bots ML (1999) Associations of C-reactive protein with measures of obesity, insulin resistance, and subclinical atherosclerosis in healthy, middle-aged women. Arterioscler Thromb Vasc Biol 19:1986–1991PubMedGoogle Scholar
  56. 56.
    Kim K, Valentine RJ, Shin Y (2008) Associations of visceral adiposity and exercise participation with C-reactive protein, insulin resistance, and endothelial dysfunction in Korean healthy adults. Metabolism 57:1181–1189PubMedGoogle Scholar
  57. 57.
    Lin CC, Kardia SL, Li CI (2010) The relationship of high sensitivity C-reactive protein to percent body fat mass, body mass index, waist-to-hip ratio, and waist circumference in a Taiwanese population. BMC Public Health 10:579–587PubMedPubMedCentralGoogle Scholar
  58. 58.
    Fain JN (2006) Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm 74:443–477PubMedGoogle Scholar
  59. 59.
    Moutachakkir M, Lamrani Hanchi A, Baraou A, Boukhira A, Chellak S (2017) Immunoanalytical characteristics of C-reactive protein and high sensitivity C-reactive protein. Ann Biol Clin (Paris). 75(2):225–229PubMedGoogle Scholar
  60. 60.
    Kannel WB, Wolf PA, Castelli WP, D’Agostino RB (1987) Fibrinogen and risk of cardiovascular disease. The Framingham study. JAMA 258(9):1183–1186PubMedGoogle Scholar
  61. 61.
    Ditschuneit HH, Flechtner-Mors M, Adler G (1995) Fibrinogen in obesity before and after weight reduction. Obes Res 3(1):43–48PubMedGoogle Scholar
  62. 62.
    Asferg C, Jensen JS, Marott JL, Appleyard M, Møgelvang R, Jensen GB, Jeppesen J (2009) Markers of inflammation and hemodynamic measurements in obesity: Copenhagen City Heart Study. Am J Hypertens 22(4):451–456PubMedGoogle Scholar
  63. 63.
    Piche ME, Lemieux S, Weisnagel SJ (2005) Relation of high-sensitivity C-reactive protein, interleukin-6, tumor necrosis factor-alpha, and fibrinogen to abdominal adipose tissue, blood pressure, and cholesterol and triglyceride levels in healthy postmenopausal women. Am J Cardiol 96:92–97PubMedGoogle Scholar
  64. 64.
    Vilahur G, Ben-Aicha S, Badimon L (2017) New insights into the role of adipose tissue in thrombosis. Cardiovasc Res 113(9):1046–1054PubMedGoogle Scholar
  65. 65.
    Patel L, Buckels AC, Kinghorn IJ, Murdock PR, Holbrook JD, Plumpton C, Macphee CH, Smith SA (2003) Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun 300:472–476PubMedGoogle Scholar
  66. 66.
    Kaser S, Kaser A, Sandhofer A, Ebenbichler CF, Tilg H, Patsch JR (2003) Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem Biophys Res Commun 309:286–290PubMedGoogle Scholar
  67. 67.
    Degawa-Yamauchi M, Bovenkerk JE, Juliar BE, Watson W, Kerr K, Jones R, Zhu Q, Considine RV (2003) Serum resistin (FIZZ3) protein is increased in obese humans. J Clin Endocrinol Metab 88:5452–5455PubMedGoogle Scholar
  68. 68.
    Huang F, Del-Río-Navarro BE, Pérez-Ontiveros JA, Ruiz-Bedolla E, Saucedo-Ramírez OJ, Villafaña S, Bravo G, Mailloux-Salinas P, Hong E (2014) Effect of six-month lifestyle intervention on adiponectin, resistin and soluble tumor necrosis factor-α receptors in obese adolescents. Endocr J 61:921–931PubMedGoogle Scholar
  69. 69.
    Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A (2005) Resistin, an adipokine with potent proinflammatory properties. J Immunol 174:5789–5795PubMedGoogle Scholar
  70. 70.
    Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ (2005) Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 111:932–939PubMedGoogle Scholar
  71. 71.
    Sundén-Cullberg J, Nyström T, Lee ML, Mullins GE, Tokics L, Andersson J, Norrby-Teglund A, Treutiger CJ (2007) Pronounced elevation of resistin correlates with severity of disease in severe sepsis and septic shock. Crit Care Med 35:1536–1542PubMedGoogle Scholar
  72. 72.
    Sartipy P, Loskutoff DJ (2003) Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 100:7265–7270PubMedGoogle Scholar
  73. 73.
    Huber J, Kiefer FW, Zeyda M, Ludvik B, Silberhumer GR, Prager G (2008) CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab 93:3215–3221PubMedGoogle Scholar
  74. 74.
    Harman-Boehm I, Blüher M, Redel H, Sion-Vardy N, Ovadia S, Avinoach E (2007) Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 92:2240–2247PubMedGoogle Scholar
  75. 75.
    Catalán V, Gómez-Ambrosi J, Ramirez B, Rotellar F, Pastor C, Silva C (2007) Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg 17:1464–1474PubMedGoogle Scholar
  76. 76.
    Breslin WL, Johnston CA, Strohacker K, Carpenter KC, Davidson TR, Moreno JP (2012) Obese Mexican American children have elevated MCP-1, TNF-α, monocyte concentration, and dyslipidemia. Pediatrics 129(5):e1180–e1186PubMedGoogle Scholar
  77. 77.
    Bose T, Alvarenga JC, Tejero ME, Voruganti VS, Proffitt JM, Freeland-Graves JH (2009) Association of monocyte chemoattractant protein-1 with adipocyte number, insulin resistance and liver function markers. J Med Primatol 38:418–424PubMedPubMedCentralGoogle Scholar
  78. 78.
    Panee J (2012) Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 60(1):1–12PubMedPubMedCentralGoogle Scholar
  79. 79.
    Sell H, Eckel J (2007) Monocyte chemotactic protein-1 and its role in insulin resistance. Curr Opin Lipidol 18(3):258–262PubMedGoogle Scholar
  80. 80.
    Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB (2010) Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem 285:33623–33631PubMedPubMedCentralGoogle Scholar
  81. 81.
    Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295PubMedGoogle Scholar
  82. 82.
    Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7:947–953PubMedGoogle Scholar
  83. 83.
    Asterholm IW, Scherer PE (2010) Enhanced metabolic flexibility associated with elevated adiponectin levels. Am J Pathol 176:1364–1376PubMedPubMedCentralGoogle Scholar
  84. 84.
    Dietze-Schroeder D, Sell H, Uhlig M, Koenen M, Eckel J (2005) Autocrine action of adiponectin on human fat cells prevents the release of insulin resistance-inducing factors. Diabetes 54:2003–2011PubMedGoogle Scholar
  85. 85.
    Fasshauer M, Blüher M (2015) Adipokines in health and disease. Trends Pharmacol Sci 36:461–470PubMedGoogle Scholar
  86. 86.
    Cambuli VM, Musiu MC, Incani M, Paderi M, Serpe R, Marras V, Cossu E, Cavallo MG, Mariotti S, Loche S, Baroni MG (2008) Assessment of adiponectin and leptin as biomarkers of positive metabolic outcomes after lifestyle intervention in overweight and obese children. J Clin Endocrinol Metab 93(8):3051–3057PubMedGoogle Scholar
  87. 87.
    Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, Hamnvik OP, Koniaris A (2011) Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 301:E567–E584PubMedPubMedCentralGoogle Scholar
  88. 88.
    Barchetta I, Ciccarelli G, Cimini FA, Ceccarelli V, Orho-Melander M, Melander O, Cavallo MG (2018) Association between systemic leptin and neurotensin concentration in adult individuals with and without type 2 diabetes mellitus. J Endocrinol Invest 41:1159–1163PubMedGoogle Scholar
  89. 89.
    Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA (2015) Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism 64:35–46PubMedGoogle Scholar
  90. 90.
    Tian YF, Chang WC, Loh CH, Hsieh PS (2014) Leptin-mediated inflammatory signaling crucially links visceral fat inflammation to obesity-associated β-cell dysfunction. Life Sci 116:51–58PubMedGoogle Scholar
  91. 91.
    Mukaida N, Shiroo M, Matsushima K (1989) Genomic structure of the human monocyte-derived neutrophil chemotactic factor IL-8. J Immunol 143:1366–1371PubMedGoogle Scholar
  92. 92.
    Remick DG (2005) Interleukin-8. Crit Care Med 33:S466–S467PubMedGoogle Scholar
  93. 93.
    Baggiolini M, Loetscher P, Moser B (1995) Interleukin-8 and the chemokine family. Int J Immunopharmacol 17:103–108PubMedGoogle Scholar
  94. 94.
    Leonard EJ, Yoshimura T (1990) Neutrophil attractant/activation protein-1 (NAP-1 [interleukin-8]). Am J Respir Cell Mol Biol 2:479–486PubMedGoogle Scholar
  95. 95.
    Moreau M, Brocheriou I, Petit L, Ninio E, Chapman MJ, Rouis M (1999) Interleukin-8 mediates downregulation of tissue inhibitor of metalloproteinase-1 expression in cholesterol-loaded human macrophages: relevance to stability of atherosclerotic plaque. Circulation 99:420–426PubMedGoogle Scholar
  96. 96.
    Koch AE, Polverini PJ, Kunkel SL, Harlow LA, Di Pietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801PubMedGoogle Scholar
  97. 97.
    Yue TL, Mckenna PJ, Gu JL, Feuerstein GZ (1993) Interleukin-8 is chemotactic for vascular smooth muscle cells. Eur J Pharmacol 240:81–84PubMedGoogle Scholar
  98. 98.
    Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA Jr, Luster AD, Luscinskas FW, Rosenzweig A (1999) MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398:718–723PubMedGoogle Scholar
  99. 99.
    Kobashi C, Asamizu S, Ishiki M, Iwata M, Usui I, Yamazaki K, Tobe K, Kobayashi M, Urakaze M (2009) Inhibitory effect of IL-8 on insulin action in human adipocytes via MAP kinase pathway. J Inflamm (Lond) 27(6):25Google Scholar
  100. 100.
    Cimini FA, Barchetta I, Porzia A, Mainiero F, Costantino C, Bertoccini L, Ceccarelli V, Morini S, Baroni MG, Lenzi A, Cavallo MG (2017) Circulating IL-8 levels are increased in patients with type 2 diabetes and associated with worse inflammatory and cardiometabolic profile. Acta Diabetol 54:961–967PubMedGoogle Scholar
  101. 101.
    Pennica D, Swanson TA, Welsh JW, Roy MA, Lawrence DA, Lee J, Brush J, Rasmussen MH, Jensen LT, Andersen T, Breum L, Hilsted J (1995) Collagen metabolism in obesity: the effect of weight loss. Int J Obes Relat Metab Disord 19:659–663Google Scholar
  102. 102.
    Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810PubMedGoogle Scholar
  103. 103.
    Berschneider B, Konigshoff M (2011) WNT1 inducible signaling pathway protein 1 (WISP1): a novel mediator linking development and disease. Int J Biochem Cell Biol 43:3069Google Scholar
  104. 104.
    Maiese K, Chong ZZ, Shang YC, Wang S (2012) Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 16:1203–1214PubMedPubMedCentralGoogle Scholar
  105. 105.
    Maiese K (2014) WISP1: clinical insights for a proliferative and restorative member of the CCN family. Curr Neurovasc Res 11:378–389PubMedPubMedCentralGoogle Scholar
  106. 106.
    Zhang Q, Zhang C, Li X, Yu Y, Liang K, Shan X, Zhao K, Niu Q, Tian Z (2016) WISP1 is increased in intestinal mucosa and contributes to inflammatory cascades in inflammatory bowel disease. Dis Markers 2016:3547096PubMedPubMedCentralGoogle Scholar
  107. 107.
    Berschneider B, Ellwanger DC, Baarsma HA, Thiel C, Shimbori C, White ES, Kolb M, Neth P, Königshoff M (2014) miR-92a regulates TGF-β1-induced WISP1 expression in pulmonary fibrosis. Int J Biochem Cell Biol 53:432–441PubMedGoogle Scholar
  108. 108.
    Klee S, Lehmann M, Wagner DE, Baarsma HA, Königshoff M (2016) WISP1 mediates IL-6-dependent proliferation in primary human lung fibroblasts. Sci Rep 6:20547PubMedPubMedCentralGoogle Scholar
  109. 109.
    Tao H, Yang JJ, Shi KH, Li J (2016) Wnt signaling pathway in cardiac fibrosis: new insights and directions. Metabolism 65:30–40PubMedGoogle Scholar
  110. 110.
    Shanmugam P, Valente AJ, Prabhu SD, Venkatesan B, Yoshida T, Delafontaine P, Chandrasekar B (2011) Angiotensin-II type 1 receptor and NOX2 mediate TCF/LEF and CREB dependent WISP1 induction and cardiomyocyte hypertrophy. J Mol Cell Cardiol 50:928–938PubMedPubMedCentralGoogle Scholar
  111. 111.
    Murahovschi V, Pivovarova O, Ilkavets I, Dmitrieva RM, Döcke S, Keyhani-Nejad F, Gögebakan Ö, Osterhoff M, Kemper M, Hornemann S, Markova M, Klöting N, Stockmann M, Weickert MO, Lamounier-Zepter V, Neuhaus P, Konradi A, Dooley S, von Loeffelholz C, Blüher M, Pfeiffer AF, Rudovich N (2015) WISP1 is a novel adipokine linked to inflammation in obesity. Diabetes 64:856–866PubMedGoogle Scholar
  112. 112.
    Barchetta I, Cimini FA, Capoccia D, De Gioannis R, Porzia A, Mainiero F, Di Martino M, Bertoccini L, De Bernardinis M, Leonetti F, Baroni MG, Lenzi A, Cavallo MG (2017) WISP1 is a marker of systemic and adipose tissue inflammation in dysmetabolic subjects with or without type 2 diabetes. J Endocr Soc 1:660–670PubMedPubMedCentralGoogle Scholar
  113. 113.
    Tacke C, Aleksandrova K, Rehfeldt M, Murahovschi V, Markova M, Kemper M, Hornemann S, Kaiser U, Honig C, Gerbracht C, Kabisch S, Hörbelt T, Ouwens DM, Weickert MO, Boeing H, Pfeiffer AFH, Pivovarova O, Rudovich N (2018) Assessment of circulating Wnt1 inducible signalling pathway protein 1 (WISP-1)/CCN4 as a novel biomarker of obesity. J Cell Commun Signal 12:539–548PubMedGoogle Scholar
  114. 114.
    Sahin Ersoy G, Altun Ensari T, Subas S, Giray B, Simsek EE, Cevik O (2017) WISP1 is a novel adipokine linked to metabolic parameters in gestational diabetes mellitus. J Matern Fetal Neonatal Med 30:942–946PubMedGoogle Scholar
  115. 115.
    Sahin Ersoy G, Altun Ensari T, Vatansever D, Emirdar V, Cevik O (2017) Novel adipokines WISP1 and betatrophin in PCOS: relationship to AMH levels, atherogenic and metabolic profile. Gynecol Endocrinol 33:119–122PubMedGoogle Scholar
  116. 116.
    Lambeir AM, Durinx C, Scharpe S, De Meester I (2003) Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 40:209–294PubMedGoogle Scholar
  117. 117.
    Mulvihill EE, Drucker D (2014) Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev 35:992–1019PubMedGoogle Scholar
  118. 118.
    Röhrborn D, Wronkowitz N, Eckel J (2015) DPP4 in diabetes. Front Immunol 6:386PubMedPubMedCentralGoogle Scholar
  119. 119.
    Bergmann K, Sypniewska G (2013) Diabetes as a complication of adipose tissue dysfunction. Is there a role for potential new biomarkers? Clin Chem Lab Med 51:177–185PubMedGoogle Scholar
  120. 120.
    Lamers D, Famulla S, Wronkowitz N, Hartwig S, Lehr S (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60:1917–1925PubMedPubMedCentralGoogle Scholar
  121. 121.
    Zilleßen P, Celner J, Kretschmann A, Pfeifer A, Racké K, Mayer P (2016) Metabolic role of dipeptidyl peptidase 4 (DPP4) in primary human (pre)adipocytes. Sci Rep 17:23074Google Scholar
  122. 122.
    Chowdhury HH, Velebit J, Radić N, Frančič V, Kreft M, Zorec R (2016) Hypoxia alters the expression of dipeptidyl peptidase 4 and induces developmental remodeling of human preadipocytes. J Diabetes Res 2016:7481470PubMedPubMedCentralGoogle Scholar
  123. 123.
    Svensson H, Odén B, Edén S, Lönn M (2014) Adiponectin, chemerin, cytokines, and dipeptidyl peptidase 4 are released from human adipose tissue in a depot-dependent manner: an in vitro system including human serum albumin. BMC Endocr Disord 14:7PubMedPubMedCentralGoogle Scholar
  124. 124.
    Marques AP, Cunha-Santos J, Leal H, Sousa-Ferreira L, Pereira de Almeida L, Cavadas C, Rosmaninho-Salgado J (2018) Dipeptidyl peptidase IV (DPP-IV) inhibition prevents fibrosis in adipose tissue of obese mice. Biochim Biophys Acta 1862:403–413Google Scholar
  125. 125.
    Sell H, Blüher M, Klöting N, Schlich R, Willems M, Ruppe F, Knoefel WT, Dietrich A, Fielding BA, Arner P, Frayn KN, Eckel J (2013) Adipose dipeptidyl peptidase-4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care 36:4083–4090PubMedPubMedCentralGoogle Scholar
  126. 126.
    Zhong J, Rao X, Deiuliis J, Braunstein Z, Narula V, Hazey J, Mikami D, Needleman B, Satoskar AR, Rajagopalan S (2013) A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes 62:149–157PubMedGoogle Scholar
  127. 127.
    Stengel A, Goebel-Stengel M, Teuffel P, Hofmann T, Buße P, Kobelt P, Rose M, Klapp BF (2014) Obese patients have higher circulating protein levels of dipeptidyl peptidase IV. Peptides 61:75–82PubMedGoogle Scholar
  128. 128.
    Kisseleva T, Brenner DA (2008) Mechanisms of fibrogenesis. Exp Biol Med 233:109–122Google Scholar
  129. 129.
    Rockey DC, Bell PD, Hill JA (2015) Fibrosis—a common pathway to organ injury and failure. N Engl J Med 373:96PubMedGoogle Scholar
  130. 130.
    Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, Morarji K, Brown TD, Ismail NA, Dweck MR, Di Pietro E, Roughton M, Wage R, Daryani Y, O’Hanlon R, Sheppard MN, Alpendurada F, Lyon AR, Cook SA, Cowie MR, Assomull RG, Pennell DJ, Prasad SK (2013) Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. 2013(309):896–908Google Scholar
  131. 131.
    Agarwal I, Glazer NL, Barasch E, Biggs ML, Djoussé L, Fitzpatrick AL, Gottdiener J, Kizer JR, Rimm EB, Siscovick DS, Tracy RP, Zieman SJ, Mukamal KJ (2014) Fibrosis-related biomarkers and risk of total and cause-specific mortality: the cardiovascular health study. Am J Epidemiol 179:1331–1339PubMedPubMedCentralGoogle Scholar
  132. 132.
    Mack M (2018) Inflammation and fibrosis. Matrix Biol 68–69:106–121PubMedGoogle Scholar
  133. 133.
    Quilliot D, Zannad F, Ziegler O (2005) Impaired response of cardiac autonomic nervous system to glucose load in severe obesity. Metabolism 54:966–974PubMedGoogle Scholar
  134. 134.
    Eschalier R, Rossignol P, Kearney-Schwartz A, Adamopoulos C, Karatzidou K, Fay R, Mandry D, Marie PY, Zannad F (2014) Features of cardiac remodeling, associated with blood pressure and fibrosis biomarkers, are frequent in subjects with abdominal obesity. Hypertension 63:740–746PubMedGoogle Scholar
  135. 135.
    Barasch E, Gottdiener JS, Aurigemma G, Kitzman DW, Han J, Kop WJ, Tracy RP (2011) The relationship between serum markers of collagen turnover and cardiovascular outcome in the elderly: the Cardiovascular Health Study. Circ Heart Fail 4:733–739PubMedPubMedCentralGoogle Scholar
  136. 136.
    Nøjgaard C, Johansen JS, Christensen E, Skovgaard LT, Price PA, Becker U, EMALD Group (2003) Serum levels of YKL-40 and PIIINP as prognostic markers in patients with alcoholic liver disease. J Hepatol 39:179–186Google Scholar
  137. 137.
    Baranova A, Lal P, Birerdinc A, Younossi ZM (2011) Non-invasive markers for hepatic fibrosis. BMC Gastroenterol 11:91PubMedPubMedCentralGoogle Scholar
  138. 138.
    Jarcuska P, Janicko M, Veselíny E, Jarcuska P, Skladaný L (2010) Circulating markers of liver fibrosis progression. Clin Chim Acta 411:1009–1017PubMedGoogle Scholar
  139. 139.
    Vidal-Puig A (2013) Adipose tissue expandability, lipotoxicity and the metabolic syndrome. Endocrinol Nutr 60:39–43PubMedGoogle Scholar
  140. 140.
    Mariman EC, Wang P (2010) Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol Life Sci 67:1277–1292PubMedPubMedCentralGoogle Scholar
  141. 141.
    Wang TJ, Larson MG, Benjamin EJ, Siwik DA, Safa R, Guo CY, Corey D, Sundstrom J, Sawyer DB, Colucci WS, Vasan RS (2007) Clinical and echocardiographic correlates of plasma procollagen type III amino-terminal peptide levels in the community. Am Heart J 154:291–297PubMedPubMedCentralGoogle Scholar
  142. 142.
    Agarwal I, Glazer NL, Barasch E, Djousse L, Gottdiener JS, Ix JH, Kizer JR, Rimm EB, Siscovick DS, King GL (2015) Mukamal KJ (2015) Associations between metabolic dysregulation and circulating biomarkers of fibrosis: the Cardiovascular Health Study. Metabolism 64:1316–1323PubMedPubMedCentralGoogle Scholar
  143. 143.
    Rasmussen MH, Jensen LT, Andersen T, Breum L, Hilsted J (1995) Collagen metabolism in obesity: the effect of weight loss. Int J Obes Relat Metab Disord 19:659–663PubMedGoogle Scholar
  144. 144.
    Barchetta I, Cimini FA, De Gioannis R, Ciccarelli G, Bertoccini L, Lenzi A, Baroni MG (2018) Cavallo MG (2018) Procollagen-III peptide identifies adipose tissue-associated inflammation in type 2 diabetes with or without nonalcoholic liver disease. Diabetes Metab Res Rev 34:e2998PubMedGoogle Scholar
  145. 145.
    Bertrand C, Valet P, Castan-Laurell I (2015) Apelin and energy metabolism. Front Physiol. 10(6):115Google Scholar
  146. 146.
    Boucher J, Masri B, Daviaud D, Gesta S, Guigné C, Mazzucotelli A, Castan-Laurell I, Tack I, Knibiehler B, Carpéné C, Audigier Y, Saulnier-Blache JS, Valet P (2005) Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 46(4):1764–1771Google Scholar
  147. 147.
    Li L, Yang G, Li Q, Tang Y, Yang M, Yang H, Li K (2006) Changes and relations of circulating visfatin, apelin, and resistin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Exp Clin Endocrinol Diabetes 114(10):544–548PubMedGoogle Scholar
  148. 148.
    Medhurst AD, Jennings CA, Robbins MJ, Davis RP, Ellis C, Winborn KY, Lawrie KW, Hervieu G, Riley G, Bolaky JE, Herrity NC, Murdock P, Darker JG (2003) Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem 84(5):1162–1172PubMedGoogle Scholar
  149. 149.
    Taheri S, Murphy K, Cohen M, Sujkovic E, Kennedy A, Dhillo W, Dakin C, Sajedi A, Ghatei M, Bloom S (2002) The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem Biophys Res Commun 291(5):1208–1212PubMedGoogle Scholar
  150. 150.
    O’Shea M, Hansen MJ, Tatemoto K, Morris MJ (2003) Inhibitory effect of apelin-12 on nocturnal food intake in the rat. Nutr Neurosci. 6(3):163–167PubMedGoogle Scholar
  151. 151.
    Sörhede Winzell M, Magnusson C, Ahrén B (2005) The apj receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice. Regul Pept 131(1–3):12–17PubMedGoogle Scholar
  152. 152.
    Wei L, Hou X, Tatemoto K (2005) Regulation of apelin mRNA expression by insulin and glucocorticoids in mouse 3T3-L1 adipocytes. Regul Pept 132(1–3):27–32PubMedGoogle Scholar
  153. 153.
    García-Díaz D, Campión J, Milagro FI, Martínez JA (2007) Adiposity dependent apelin gene expression: relationships with oxidative and inflammation markers. Mol Cell Biochem 305(1–2):87–94PubMedGoogle Scholar
  154. 154.
    Cavallo MG, Sentinelli F, Barchetta I, Costantino C, Incani M, Perra L, Capoccia D, Romeo S, Cossu E, Leonetti F, Agati L, Baroni MG (2012) Altered glucose homeostasis is associated with increased serum apelin levels in type 2 diabetes mellitus. PLoS One 7(12):e51236PubMedPubMedCentralGoogle Scholar
  155. 155.
    Thomas M, Augustin HG (2009) The role of the Angiopoietins in vascular morphogenesis. Angiogenesis 12(2):125–137PubMedGoogle Scholar
  156. 156.
    Voros G, Maquoi E, Demeulemeester D, Clerx N, Collen D, Lijnen HR (2005) Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology 146(10):4545–4554PubMedGoogle Scholar
  157. 157.
    Xue Y, Cao R, Nilsson D, Chen S, Westergren R, Hedlund EM, Martijn C, Rondahl L, Krauli P, Walum E, Enerbäck S, Cao Y (2008) FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proc Natl Acad Sci USA 105(29):10167–10172PubMedGoogle Scholar
  158. 158.
    Corvera S (1842) Gealekman O (2013) Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta 3:463–472Google Scholar
  159. 159.
    An YA, Sun K, Joffin N, Zhang F, Deng Y, Donzé O, Kusminski CM, Scherer PE (2017) Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis. Elife 6:e24071PubMedPubMedCentralGoogle Scholar
  160. 160.
    Lim HS, Lip GY, Blann AD (2005) Angiopoietin-1 and angiopoietin-2 in diabetes mellitus: relationship to VEGF, glycaemic control, endothelial damage/dysfunction and atherosclerosis. Atherosclerosis 180:113–118PubMedGoogle Scholar
  161. 161.
    Lim HS, Blann AD, Chong AY, Freestone B, Lip GY (2004) Plasma vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 in diabetes: implications for cardiovascular risk and effects of multifactorial intervention. Diabetes Care 27:2918–2924PubMedGoogle Scholar
  162. 162.
    Auguet T, Quintero Y, Riesco D, Morancho B, Terra X, Crescenti A, Broch M, Aguilar C, Olona M, Porras JA, Hernandez M, Sabench F, del Castillo D, Richart C (2011) New adipokines vaspin and omentin: circulating levels and gene expression in adipose tissue from morbidly obese women. BMC Med Genet 28(12):60Google Scholar
  163. 163.
    Cătoi AF, Suciu Ş, Pârvu AE, Copăescu C, Galea RF, Buzoianu AD, Vereşiu IA, Cătoi C, Pop ID (2014) Increased chemerin and decreased omentin-1 levels in morbidly obese patients are correlated with insulin resistance, oxidative stress and chronic inflammation. Clujul Med 87(1):19–26PubMedPubMedCentralGoogle Scholar
  164. 164.
    de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, Ndubuizu K, Patil S, Schwartz A, Kligman M, Fried SK, Gong DW, Shuldiner AR, Pollin TI, McLenithan JC (2007) Omentin plasma levels and gene expression are decreased in obesity. Diabetes 56(6):1655–1661PubMedGoogle Scholar
  165. 165.
    Cai RC, Wei L, DI JZ, Yu HY, Bao YQ, Jia WP (2009) Expression of omentin in adipose tissues in obese and type 2 diabetic patients. Zhonghua yi xue za zhi 89(6):381–384PubMedGoogle Scholar
  166. 166.
    Catli G, Anik A, Abaci A, Kume T, Bober E (2013) Low omentin-1 levels are related with clinical and metabolic parameters in obese children. Exp Clin Endocrinol Diabetes 121(10):595–600PubMedGoogle Scholar
  167. 167.
    Prats-Puig A, Bassols J, Bargalló E, Mas-Parareda M, Ribot R, Soriano-Rodríguez P, Berengüí À, Díaz M, de Zegher F, Ibánez L, López-Bermejo A (2011) Toward an early marker of metabolic dysfunction: omentin-1 in prepubertal children. Obesity (Silver Spring) 19(9):1905–1907Google Scholar
  168. 168.
    Pan HY, Guo L, Li Q (2010) Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract 88(1):29–33PubMedGoogle Scholar
  169. 169.
    Tan BK, Adya R, Farhatullah S, Lewandowski KC, O’Hare P, Lehnert H, Randeva HS (2008) Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome: ex vivo and in vivo regulation of omentin-1 by insulin and glucose. Diabetes 57(4):801–808PubMedGoogle Scholar
  170. 170.
    Jialal I, Devaraj S, Kaur H, Adams-Huet B, Bremer AA (2013) Increased chemerin and decreased omentin-1 in both adipose tissue and plasma in nascent metabolic syndrome. J Clin Endocrinol Metab 98(3):E514–E517PubMedGoogle Scholar
  171. 171.
    Moreno-Navarrete JM, Catalán V, Ortega F, Gómez-Ambrosi J, Ricart W, Frühbeck G, Fernández-Real JM (2010) Circulating omentin concentration increases after weight loss. Nutr Metab (Lond). 9(7):27Google Scholar
  172. 172.
    Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, Muruganandan S, Sinal CJ (2007) Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem 282(38):28175–28188PubMedGoogle Scholar
  173. 173.
    Jiang Y, Liu P, Jiao W, Meng J, Feng J (2018) Gax suppresses chemerin/CMKLR1-induced preadipocyte biofunctions through the inhibition of Akt/mTOR and ERK signaling pathways. J Cell Physiol 233(1):572–586PubMedGoogle Scholar
  174. 174.
    Ernst MC, Haidl ID, Zúñiga LA, Dranse HJ, Rourke JL, Zabel BA, Butcher EC, Sinal CJ (2012) Disruption of the chemokine-like receptor-1 (CMKLR1) gene is associated with reduced adiposity and glucose intolerance. Endocrinology 153(2):672–682PubMedGoogle Scholar
  175. 175.
    Kaur J, Adya R, Tan BK, Chen J, Randeva HS (2010) Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun 391(4):1762–1768PubMedGoogle Scholar
  176. 176.
    Wang N, Wang QJ, Feng YY, Shang W, Cai M (2014) Overexpression of chemerin was associated with tumor angiogenesis and poor clinical outcome in squamous cell carcinoma of the oral tongue. Clin Oral Investig 18(3):997–1004PubMedGoogle Scholar
  177. 177.
    Lin S, Teng J, Li J, Sun F, Yuan D, Chang J (2016) Association of chemerin and vascular endothelial growth factor (VEGF) with diabetic nephropathy. Med Sci Monit 10(22):3209–3214Google Scholar
  178. 178.
    Ghosh AR, Bhattacharya R, Bhattacharya S, Nargis T, Rahaman O, Duttagupta P, Raychaudhuri D, Liu CS, Roy S, Ghosh P, Khanna S, Chaudhuri T, Tantia O, Haak S, Bandyopadhyay S, Mukhopadhyay S, Chakrabarti P, Ganguly D (2016) Adipose recruitment and activation of plasmacytoid dendritic cells fuel metaflammation. Diabetes 65(11):3440–3452PubMedGoogle Scholar
  179. 179.
    Helfer G, Wu QF (2018) Chemerin: a multifaceted adipokine involved in metabolic disorders. J Endocrinol 238(2):R79–R94PubMedPubMedCentralGoogle Scholar
  180. 180.
    Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, Collier G, Walder K, Segal D (2007) Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148(10):4687–4694PubMedGoogle Scholar
  181. 181.
    Chakaroun R, Raschpichler M, Klöting N, Oberbach A, Flehmig G, Kern M, Schön MR, Shang E, Lohmann T, Dreßler M, Fasshauer M, Stumvoll M, Blüher M (2012) Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metabolism. 61(5):706–714PubMedGoogle Scholar
  182. 182.
    Landgraf K, Friebe D, Ullrich T, Kratzsch J, Dittrich K, Herberth G, Adams V, Kiess W, Erbs S, Körner A (2012) Chemerin as a mediator between obesity and vascular inflammation in children. J Clin Endocrinol Metab 97(4):E556–E564PubMedGoogle Scholar
  183. 183.
    Gu P, Jiang W, Lu B, Shi Z (2014) Chemerin is associated with inflammatory markers and metabolic syndrome phenotypes in hypertension patients. Clin Exp Hypertens 36(5):326–332PubMedGoogle Scholar
  184. 184.
    Perumalsamy S, Aqilah Mohd Zin NA, Widodo RT, Wan Ahmad WA, Vethakkan SRDB, Huri HZ (2017) Chemokine like receptor-1 (CMKLR-1) receptor: a potential therapeutic target in management of chemerin induced type 2 diabetes mellitus and cancer. Curr Pharm Des 23(25):3689–3698PubMedGoogle Scholar
  185. 185.
    Jenne DE, Tschopp J (1988) Granzymes, a family of serine proteases released from granules of cytolytic T lymphocytes upon T cell receptor stimulation. Immunol Rev 103:53–71PubMedGoogle Scholar
  186. 186.
    Kim WJ, Kim H, Suk K, Lee WH (2007) Macrophages express granzyme B in the lesion areas of atherosclerosis and rheumatoid arthritis. Immunol Lett 111(1):57–65PubMedGoogle Scholar
  187. 187.
    Buzza MS, Zamurs L, Sun J, Bird CH, Smith AI (2005) Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin. J Biol Chem 280(25):23549–23558PubMedGoogle Scholar
  188. 188.
    Hiebert PR, Granville DJ (2012) Granzyme B in injury, inflammation and repair. Trends Mol Med 18(12):732–741PubMedGoogle Scholar
  189. 189.
    Voskoboinik I, Whisstock JC, Trapani JA (2015) Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol 15(6):388–400PubMedPubMedCentralGoogle Scholar
  190. 190.
    Choy JC, McDonald PC, Suarez AC, Hung VH, Wilson JE, McManus BM, Granville DJ (2003) Granzyme B in atherosclerosis and transplant vascular disease: association with cell death and atherosclerotic disease severity. Mod Pathol 16(5):460–470PubMedGoogle Scholar
  191. 191.
    Skjelland M, Michelsen AE, Krohg-Sørensen K, Tennøe B, Dahl A (2007) Plasma levels of granzyme B are increased in patients with lipid-rich carotid plaques as determined by echogenicity. Atherosclerosis 195(2):e142–e146PubMedGoogle Scholar
  192. 192.
    Chamberlain CM, Granville DJ (2007) The role of Granzyme B in atheromatous diseases. Can J Physiol Pharmacol 85(1):89–95PubMedGoogle Scholar
  193. 193.
    Ikemoto T, Hojo Y, Kondo K, Takahashi N, Hirose M, Nishimura Y, Katsuki T, Shimada K (2009) Plasma granzyme B as a predicting factor of coronary artery disease—clinical significance in patients with chronic renal failure. J Cardiol 54(3):409–415PubMedGoogle Scholar
  194. 194.
    Saito Y, Kondo H, Hojo Y (2011) Granzyme B as a novel factor involved in cardiovascular diseases. J Cardiol 141–147PubMedGoogle Scholar
  195. 195.
    Shen Y, Cheng F, Sharma M, Merkulova Y, Raithatha SA (2016) Granzyme B deficiency protects against angiotensin II-induced cardiac fibrosis. Am J Pathol 186(1):87–100PubMedGoogle Scholar
  196. 196.
    Yang H, Youm YH, Vandanmagsar B, Ravussin A, Gimble JM (2010) Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol 185(3):1836–1845PubMedPubMedCentralGoogle Scholar
  197. 197.
    El Mesallamy HO, Hamdy NM, Mostafa DM, Amin AI (2014) The serine protease granzyme B as an inflammatory marker, in relation to the insulin receptor cleavage in human obesity and type 2 diabetes mellitus. J Interferon Cytokine Res 34(3):179–186PubMedGoogle Scholar
  198. 198.
    Oztas E, Ozler S, Tokmak A, Yilmaz N, Celik HT (2016) Increased levels of serum granzyme-B is associated with insulin resistance and increased cardiovascular risk in adolescent polycystic ovary syndrome patients. Eur J Obstet Gynecol Reprod Biol 198:89–93PubMedGoogle Scholar
  199. 199.
    Cimini FA, D’Eliseo D, Barchetta I, Bertoccini L, Velotti F, Cavallo MG (2018) Increased circulating granzyme B in type 2 diabetes patients with low-grade systemic inflammation. Cytokine 1043–4666(18):30431–30439Google Scholar
  200. 200.
    Maffei M, Barone I, Scabia G, Santini F (2016) The multifaceted Haptoglobin in the context of adipose tissue and metabolism. Endocr Rev 37(4):403–416PubMedGoogle Scholar
  201. 201.
    Chiellini C, Bertacca A, Novelli SE (2002) Obesity modulates the expression of haptoglobin in the white adipose tissue via TNFalpha. J Cell Physiol 190(2):251–258PubMedGoogle Scholar
  202. 202.
    Nascimento CO, Hunter L, Trayhurn P (2004) Regulation of haptoglobin gene expression in 3T3-L1 adipocytes by cytokines, catecholamines, and PPARgamma. Biochem Biophys Res Commun 313(3):702–708PubMedGoogle Scholar
  203. 203.
    Chiellini C, Santini F, Marsili A (2004) Serum haptoglobin: a novel marker of adiposity in humans. J Clin Endocrinol Metab 89(6):2678–2683PubMedGoogle Scholar
  204. 204.
    Friedrichs WE, Navarijo-Ashbaugh AL, Bowman BH, Yang F (1995) Expression and inflammatory regulation of haptoglobin gene in adipocytes. Biochem Biophys Res Commun 209(1):250–256PubMedGoogle Scholar
  205. 205.
    Fain JN, Bahouth SW, Madan AK (2004) Haptoglobin release by human adipose tissue in primary culture. J Lipid Res 45(3):536–542PubMedGoogle Scholar
  206. 206.
    Fain JN, Sacks HS, Bahouth SW, Tichansky DS, Madan AK, Cheema PS (2010) Human epicardial adipokine messenger RNAs: comparisons of their expression in substernal, sub- cutaneous, and omental fat. Metabolism. Sep. 59(9):1379–1386Google Scholar
  207. 207.
    Gamucci O, Lisi S, Scabia G (2012) Haptoglobin deficiency determines changes in adipocyte size and adipogenesis. Adipocyte 1(3):142–183PubMedPubMedCentralGoogle Scholar
  208. 208.
    Lisi S, Gamucci O, Vottari T (2011) Obesity-associated hepatosteatosis and impairment of glucose homeostasis are attenuated by haptoglobin deficiency. Diabetes 60(10):2496–2505PubMedPubMedCentralGoogle Scholar
  209. 209.
    Maffei M, Funicello M, Vottari T (2009) The obesity and inflammatory marker haptoglobin attracts monocytes via interaction with chemokine (C–C motif) receptor 2 (CCR2). BMC Biol 7:87PubMedPubMedCentralGoogle Scholar
  210. 210.
    Salmi M, Jalkanen S (1992) A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans. Science 257:1407–1409PubMedGoogle Scholar
  211. 211.
    Salmi M, Jalkanen S (2001) VAP-1: an adhesin and an enzyme. Trends Immunol 22:211–216PubMedGoogle Scholar
  212. 212.
    Stolen CM, Yegutkin GG, Kurkijarvi R, Bono P, Alitalo K, Jalkanen S (2004) Origins of serum semicarbazide-sensitive amine oxidase. Circ Res 95:50–57PubMedGoogle Scholar
  213. 213.
    Boomsma F, Bhaggoe UM, van der Houwen AM, van den Meiracker AH (2003) Plasma semicarbazide-sensitive amine oxidase in human (patho)physiology. Biochim Biophys Acta 1647:48–54PubMedGoogle Scholar
  214. 214.
    Abella A, Garcia-Vicente S, Viguerie N (2004) Adipocytes release a soluble form of VAP-1/SSAO by a metalloprotease- dependent process and in a regulated manner. Diabetologia 47:429–438PubMedGoogle Scholar
  215. 215.
    Mercier N, Moldes M, El HK, Feve B (2001) Semicarbazide- sensitive amine oxidase activation promotes adipose conversion of 3T3–L1 cells. Biochem J. 358:335–342PubMedPubMedCentralGoogle Scholar
  216. 216.
    Arvilommi AM, Salmi M, Jalkanen S (1997) Organ-selective regulation of vascular adhesion protein-1 expression in man. Eur J Immunol 27:1794–1800PubMedGoogle Scholar
  217. 217.
    Mercier N, Moldes M, El Hadri K, Feve B (2003) Regulation of semicarbazide-sensitive amine oxidase expression by tumor necrosis factor-alpha in adipocytes: functional consequences on glucose transport. J Pharmacol Exp Ther 304:1197–1208PubMedGoogle Scholar
  218. 218.
    Enrique-Taranco G, Castan I, Morin N, Marti L, Abella A, Camps M, Casamitjana R, Palacın M, Testar X, Degerman E, Carpene C, Zorzano A (2000) Substrates of semicarbazide- sensitive amine oxidase co-operate with vanadate to stimulate tyrosine phosphorylation of insulin-receptor-substrate proteins, phosphoinositide 3-kinase activity and GLUT4 translocation in adipose cells. Biochem J 350(Pt 1):171–180Google Scholar
  219. 219.
    Enrique-Taranco G, Marti L, Morin N, Lizcano JM, Unzeta M, Sevilla L, Camps M, Palacın M, Testar X, Carpene C, Zorzano A (1998) Role of semicarbazide-sensitive amine oxidase on glucose transport and GLUT4 recruitment to the cell surface in adipose cells. J Biol Chem 273:8025–8032Google Scholar
  220. 220.
    Morin N, Lizcano JM, Fontana E, Marti L, Smih F, Rouet P, Prevot D, Zorzano A, Unzeta M, Carpene C (2001) Semicarbazide-sensitive amine oxidase substrates stimulate glucose transport and inhibit lipolysis in human adipocytes. J Pharmacol Exp Ther 297:563–572PubMedGoogle Scholar
  221. 221.
    Li HY, Lee WJ, Chen MJ, Chuang LM (2005) Change in vascular adhesion protein-1 and metabolic phenotypes after vertical banded gastroplasty for morbid obesity. Obes Res 13(5):855–861 PubMed PMID: 15919838 PubMedGoogle Scholar
  222. 222.
    Salmi M, Stolen C, Jousilahti P (2002) Insulin-regulated increase of soluble vascular adhesion protein-1 in diabetes. Am J Pathol 161:2255–2262PubMedPubMedCentralGoogle Scholar
  223. 223.
    Kuo CH, Wei JN, Yang CY, Ou HY, Wu HT, Fan KC, Wang SH, Hua CH, Hsiao CH, Lee MK, Li HY (2019) Serum vascular adhesion protein-1 is up-regulated in hyperglycemia and is associated with incident diabetes. Int J Obes (Lond) 43(3):512–522Google Scholar
  224. 224.
    Boomsma F, van den Meiracker AH, Winkle S (1999) Circulating semicarbazide-sensitive amine oxidase is raised both in type I (insulin-dependent), in Type II (non-insulin-dependent) diabetes mellitus and even in childhood type I diabetes at first clinical diagnosis. Diabetologia 42:233–237PubMedGoogle Scholar
  225. 225.
    Meszaros Z, Szombathy T, Raimondi L, Karadi I, Romics L, Magyar K (1999) Elevated serum semicarbazide-sensitive amine oxidase activity in non-insulin-dependent diabetes mellitus: correlation with body mass index and serum triglyceride. Metabolism 48:113–117PubMedGoogle Scholar
  226. 226.
    Li HY, Jiang YD, Chang TJ, Wei JN, Lin MS, Lin CH, Chiang FT, Shih SR, Hung CS, Hua CH, Smith DJ, Vanio J, Chuang LM (2011) Serum vascular adhesion protein-1 predicts 10-year cardiovascular and cancer mortality in individuals with type 2 diabetes. Diabetes 60(3):993–999PubMedPubMedCentralGoogle Scholar
  227. 227.
    Garpenstrand H, Ekblom J, Backlund LB, Oreland L, Rosenqvist U (1999) Elevated plasma semicarbazide-sensitive amine oxidase (SSAO) activity in type 2 diabetes mellitus complicated by retinopathy. Diabet Med 16:514–521PubMedGoogle Scholar
  228. 228.
    Kurkijarvi R, Adams DH, Leino R, Mottonen T, Jalkanen S, Salmi M (1998) Circulating form of human vascular adhesion protein-1 (VAP-1): increased serum levels in inflammatory liver diseases. J Immunol 161:1549–1557PubMedGoogle Scholar
  229. 229.
    Boomsma F, de Kam PJ, Tjeerdsma G, van den Meiracker AH, van Veldhuisen DJ (2000) Plasma semicarbazide-sensitive amine oxidase (SSAO) is an independent prognostic marker for mortality in chronic heart failure. Eur Heart J 21:1859–1863PubMedGoogle Scholar
  230. 230.
    Salmi M, Jalkanen S (2019) Vascular adhesion protein-1: a cell surface amine oxidase in translation. Antioxidants Redox Signal 24:1341–1349Google Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2019

Authors and Affiliations

  1. 1.Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and EndocrinologySapienza University of RomeRomeItaly

Personalised recommendations