Advertisement

Genome-wide meta-analysis identifies novel loci associated with free triiodothyronine and thyroid-stimulating hormone

  • M. Popović
  • A. Matana
  • V. Torlak
  • T. Boutin
  • D. Brdar
  • I. Gunjača
  • D. Kaličanin
  • I. Kolčić
  • V. Boraska Perica
  • A. Punda
  • O. Polašek
  • M. Barbalić
  • C. Hayward
  • T. ZemunikEmail author
Original Article
  • 29 Downloads

Abstract

Purpose

Thyroid hormones are essential for the normal function of almost all human tissues, and have critical roles in metabolism, differentiation and growth. Free triiodothyronine (fT3), free thyroxine (fT4) and thyroid-stimulating hormone (TSH) levels are under strong genetic influence; however, most of the heritability is yet unexplained.

Methods

In order to identify novel loci associated with fT3, fT4 and TSH serum levels we performed a genome-wide meta-analysis of 7 411 206 polymorphisms in up to 1731 euthyroid individuals from three Croatian cohorts from Dalmatia region: two genetically isolated island populations and one mainland population. Additionally, we also performed a bivariate analysis of fT3 and fT4 levels.

Results

The EPHB2 gene variant rs67142165 reached genome-wide significance for association with fT3 plasma levels (P = 9.27 × 10−9) and its significance was confirmed in bivariate analysis (P = 9.72 × 10−9). We also found a genome-wide significant association for variant rs13037502 upstream of the PTPN1 gene and TSH plasma levels (P = 1.67 × 10−8).

Conclusion

We identified a first genome-wide significant variant associated with fT3 plasma levels, as well as a novel locus associated with TSH plasma levels. These findings are biologically relevant and enrich our knowledge about the genetic basis of pituitary-thyroid axis function.

Keywords

Free triiodothyronine Free thyroxine Thyroid-stimulating hormone Genome-wide association studies Meta-analysis 

Notes

Acknowledgements

The Croatian Science Foundation funded this work under the project “Identification of new genetic loci implicated in regulation of thyroid and parathyroid function” (Grant No. 1498). The “10 001 Dalmatians” project was funded by grants from the Medical Research Council (UK), European Commission Framework 6 project EUROSPAN (Contract No. LSHG-CT-2006-018947), the Republic of Croatia Ministry of Science, Education and Sports research Grant (216-1080315-0302), the Croatian Science Foundation (Grant 8875), CEKOM (Ministry of Economy, Entrepreneurship and Crafts) and the Research Centre of Excellence in Personalized Medicine (Ministry of Science and Education). We would like to thank all participants of this study and acknowledge invaluable support of the local teams in Zagreb and Split, especially that of the Institute for Anthropological Research, Zagreb, Croatia.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

40618_2019_1030_MOESM1_ESM.docx (252 kb)
Supplementary file1 (DOCX 252 kb)

References

  1. 1.
    Rousset B, Dupuy C, Miot F, Dumont J (2000) Thyroid hormone synthesis and secretion. In: Feingold KR, Anawalt B, Boyce A et al. (eds) Endotext. MDText.com, Inc., South Dartmouth. https://www.ncbi.nlm.nih.gov/books/NBK285550/. Accessed 20 August 2018
  2. 2.
    Stockigt J (2003) Assessment of thyroid function: towards an integrated laboratory—clinical approach. Clin Biochem Rev 24(4):109–122PubMedPubMedCentralGoogle Scholar
  3. 3.
    Nussey SWS (2001) Endocrinology: an integrated approach. the thyroid gland. BIOS Scientific Publishers, Oxford. https://www.ncbi.nlm.nih.gov/books/NBK22/. Accessed 20 August 2018
  4. 4.
    Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81(3):1097–1142.  https://doi.org/10.1152/physrev.2001.81.3.1097 PubMedGoogle Scholar
  5. 5.
    Visser TJ, Kaptein E, Terpstra OT, Krenning EP (1988) Deiodination of thyroid hormone by human liver. J Clin Endocrinol Metab 67(1):17–24.  https://doi.org/10.1210/jcem-67-1-17 PubMedGoogle Scholar
  6. 6.
    Andersen S, Pedersen KM, Bruun NH, Laurberg P (2002) Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab 87(3):1068–1072.  https://doi.org/10.1210/jcem.87.3.8165 PubMedGoogle Scholar
  7. 7.
    Meier CA, Maisey MN, Lowry A, Muller J, Smith MA (1993) Interindividual differences in the pituitary-thyroid axis influence the interpretation of thyroid function tests. Clin Endocrinol 39(1):101–107.  https://doi.org/10.1111/j.1365-2265.1993.tb01758.x Google Scholar
  8. 8.
    Biondi B, Cooper DS (2008) The clinical significance of subclinical thyroid dysfunction. Endocr Rev 29(1):76–131.  https://doi.org/10.1210/er.2006-0043 PubMedGoogle Scholar
  9. 9.
    Asvold, B.O., Vatten, L.J., Nilsen, T.I., Bjoro, T.: The association between TSH within the reference range and serum lipid concentrations in a population-based study The HUNT Study. Eur J Endocrinol 156(2), 181–186 (2007).  https://doi.org/10.1530/eje.1.02333 PubMedGoogle Scholar
  10. 10.
    Wang F, Tan Y, Wang C, Zhang X, Zhao Y, Song X, Zhang B, Guan Q, Xu J, Zhang J, Zhang D, Lin H, Yu C, Zhao J (2012) Thyroid-stimulating hormone levels within the reference range are associated with serum lipid profiles independent of thyroid hormones. J Clin Endocrinol Metab 97(8):2724–2731.  https://doi.org/10.1210/jc.2012-1133 PubMedGoogle Scholar
  11. 11.
    van Tienhoven-Wind LJ, Dullaart RP (2017) Increased leptin/adiponectin ratio relates to low-normal thyroid function in metabolic syndrome. Lipids Health Dis 16(1):6.  https://doi.org/10.1186/s12944-016-0403-4 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Knudsen N, Laurberg P, Rasmussen LB, Bulow I, Perrild H, Ovesen L, Jorgensen T (2005) Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J Clin Endocrinol Metab 90(7):4019–4024.  https://doi.org/10.1210/jc.2004-2225 PubMedGoogle Scholar
  13. 13.
    Le TN, Celi FS, Wickham EP (2016) Thyrotropin levels are associated with cardiometabolic risk factors in euthyroid adolescents. Thyroid 26(10):1441–1449.  https://doi.org/10.1089/thy.2016.0055 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bielecka-Dabrowa A, Mikhailidis DP, Rysz J, Banach M (2009) The mechanisms of atrial fibrillation in hyperthyroidism. Thyroid Res 2:4–4.  https://doi.org/10.1186/1756-6614-2-4 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hansen PS, Brix TH, Sorensen TI, Kyvik KO, Hegedus L (2004) Major genetic influence on the regulation of the pituitary-thyroid axis: a study of healthy Danish twins. J Clin Endocrinol Metab 89(3):1181–1187.  https://doi.org/10.1210/jc.2003-031641 PubMedGoogle Scholar
  16. 16.
    Panicker V, Wilson SG, Spector TD, Brown SJ, Falchi M, Richards JB, Surdulescu GL, Lim EM, Fletcher SJ, Walsh JP (2008) Heritability of serum TSH, free T4 and free T3 concentrations: a study of a large UK twin cohort. Clin Endocrinol 68(4):652–659.  https://doi.org/10.1111/j.1365-2265.2007.03079.x Google Scholar
  17. 17.
    Medici M, Visser TJ, Peeters RP (2017) Genetics of thyroid function. Best Pract Res Clin Endocrinol Metab 31(2):129–142.  https://doi.org/10.1016/j.beem.2017.04.002 PubMedGoogle Scholar
  18. 18.
    Taylor, P.N., Porcu, E., Chew, S., Campbell, P.J., Traglia, M., Brown, S.J., Mullin, B.H., Shihab, H.A., Min, J., Walter, K., Memari, Y., Huang, J., Barnes, M.R., Beilby, J.P., Charoen, P., Danecek, P., Dudbridge, F., Forgetta, V., Greenwood, C., Grundberg, E., Johnson, A.D., Hui, J., Lim, E.M., McCarthy, S., Muddyman, D., Panicker, V., Perry, J.R., Bell, J.T., Yuan, W., Relton, C., Gaunt, T., Schlessinger, D., Abecasis, G., Cucca, F., Surdulescu, G.L., Woltersdorf, W., Zeggini, E., Zheng, H.F., Toniolo, D., Dayan, C.M., Naitza, S., Walsh, J.P., Spector, T., Davey Smith, G., Durbin, R., Richards, J.B., Sanna, S., Soranzo, N., Timpson, N.J., Wilson, S.G., UK Consortium: Whole-genome sequence-based analysis of thyroid function. Nat Commun 6, 5681 (2015).  https://doi.org/10.1038/ncomms6681 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Rudan I, Marusic A, Jankovic S, Rotim K, Boban M, Lauc G, Grkovic I, Dogas Z, Zemunik T, Vatavuk Z, Bencic G, Rudan D, Mulic R, Krzelj V, Terzic J, Stojanovic D, Puntaric D, Bilic E, Ropac D, Vorko-Jovic A, Znaor A, Stevanovic R, Biloglav Z, Polasek O (2009) "10 001 Dalmatians:" Croatia launches Its National Biobank. Croat Med J 50(1):4–6.  https://doi.org/10.3325/cmj.2009.50.4 PubMedPubMedCentralGoogle Scholar
  20. 20.
    Aulchenko YS, Ripke S, Isaacs A, Van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23(10):1294–1296.  https://doi.org/10.1093/bioinformatics/btm108 PubMedGoogle Scholar
  21. 21.
    Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39(7):906–913.  https://doi.org/10.1038/ng2088 PubMedGoogle Scholar
  22. 22.
    Struchalin MV, Amin N, Eilers PHC, van Duijn CM, Aulchenko YS (2012) An R package "VariABEL" for genome-wide searching of potentially interacting loci by testing genotypic variance heterogeneity. Bmc Genet 13(1):4.  https://doi.org/10.1186/1471-2156-13-4 PubMedPubMedCentralGoogle Scholar
  23. 23.
    Schwarzer G (2007) meta: an R package for meta-analysis 7(3):40-45. https://cran.r-project.org/doc/Rnews/Rnews_2007-3.pdf. Accessed 15 August 2018
  24. 24.
    Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26(18):2336–2337.  https://doi.org/10.1093/bioinformatics/btq419 PubMedPubMedCentralGoogle Scholar
  25. 25.
    Turner, S.D.: qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. biorXiv (2017).  https://doi.org/10.1101/005165 Google Scholar
  26. 26.
    Shen X, Klaric L, Sharapov S, Mangino M, Ning Z, Wu D, Trbojevic-Akmacic I, Pucic-Bakovic M, Rudan I, Polasek O, Hayward C, Spector TD, Wilson JF, Lauc G, Aulchenko YS (2017) Multivariate discovery and replication of five novel loci associated with Immunoglobulin G N-glycosylation. Nat Commun 8(1):447.  https://doi.org/10.1038/s41467-017-00453-3 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934.  https://doi.org/10.1126/science.1075762 PubMedGoogle Scholar
  28. 28.
    Cantisani MC, Parascandolo A, Perala M, Allocca C, Fey V, Sahlberg N, Merolla F, Basolo F, Laukkanen MO, Kallioniemi OP, Santoro M, Castellone MD (2016) A loss-of-function genetic screening identifies novel mediators of thyroid cancer cell viability. Oncotarget 7(19):28510–28522.  https://doi.org/10.18632/oncotarget.8577 PubMedPubMedCentralGoogle Scholar
  29. 29.
    Park I, Lee H-S (2015) EphB/ephrinB signaling in cell adhesion and migration. Mol Cells 38(1):14–19.  https://doi.org/10.14348/molcells.2015.2116 PubMedGoogle Scholar
  30. 30.
    Salvucci O, Tosato G (2012) Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis. Adv Cancer Res 114:21–57.  https://doi.org/10.1016/b978-0-12-386503-8.00002-8 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Westerlund J, Andersson L, Liang S, Carlsson T, Nilsson M, Amendola E, Fagman H (2011) Role of EphA4 receptor signaling in thyroid development: regulation of folliculogenesis and propagation of the C-cell lineage. Endocrinology 152(3):1154–1164.  https://doi.org/10.1210/en.2010-0232 PubMedGoogle Scholar
  32. 32.
    Benvenga S, Guarneri F (2019) Thyroid hormone binding motifs and iodination pattern of thyroglobulin. Front Biosci 24:212–230Google Scholar
  33. 33.
    Sweeney C, Lai C, Riese DJ 2nd, Diamonti AJ, Cantley LC, Carraway KL 3rd (2000) Ligand discrimination in signaling through an ErbB4 receptor homodimer. J Biol Chem 275(26):19803–19807.  https://doi.org/10.1074/jbc.C901015199 PubMedGoogle Scholar
  34. 34.
    Sundvall M, Peri L, Maatta JA, Tvorogov D, Paatero I, Savisalo M, Silvennoinen O, Yarden Y, Elenius K (2007) Differential nuclear localization and kinase activity of alternative ErbB4 intracellular domains. Oncogene 26(48):6905–6914.  https://doi.org/10.1038/sj.onc.1210501 PubMedGoogle Scholar
  35. 35.
    Haugen DR, Akslen LA, Varhaug JE, Lillehaug JR (1996) Expression of c-erbB-3 and c-erbB-4 proteins in papillary thyroid carcinomas. Can Res 56(6):1184–1188Google Scholar
  36. 36.
    Chu X, Pan CM, Zhao SX, Liang J, Gao GQ, Zhang XM, Yuan GY, Li CG, Xue LQ, Shen M, Liu W, Xie F, Yang SY, Wang HF, Shi JY, Sun WW, Du WH, Zuo CL, Shi JX, Liu BL, Guo CC, Zhan M, Gu ZH, Zhang XN, Sun F, Wang ZQ, Song ZY, Zou CY, Sun WH, Guo T, Cao HM, Ma JH, Han B, Li P, Jiang H, Huang QH, Liang LM, Liu LB, Chen G, Su Q, Peng YD, Zhao JJ, Ning G, Chen Z, Chen JL, Chen SJ, Huang W, Song HD, Genetics CC (2011) A genome-wide association study identifies two new risk loci for Graves' disease. Nat Genet 43(9):897–901.  https://doi.org/10.1038/ng.898 PubMedGoogle Scholar
  37. 37.
    Hansen PS, Brix TH, Iachine I, Sorensen TIA, Kyvik KO, Hegedus L (2007) Genetic and environmental interrelations between measurements of thyroid function in a healthy Danish twin population. AJP Endocrinol Metab 292(3):765–770.  https://doi.org/10.1152/ajpendo.00321.2006 Google Scholar
  38. 38.
    Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I., Edlund, K., Lundberg, E., Navani, S., Szigyarto, C.A.-K., Odeberg, J., Djureinovic, D., Takanen, J.O., Hober, S., Alm, T., Edqvist, P.-H., Berling, H., Tegel, H., Mulder, J., Rockberg, J., Nilsson, P., Schwenk, J.M., Hamsten, M., von Feilitzen, K., Forsberg, M., Persson, L., Johansson, F., Zwahlen, M., von Heijne, G., Nielsen, J., Pontén, F.: Tissue-based map of the human proteome. Science (2015).  https://doi.org/10.1126/science.1260419 PubMedGoogle Scholar
  39. 39.
    Robinson DR, Wu YM, Lin SF (2000) The protein tyrosine kinase family of the human genome. Oncogene 19(49):5548–5557.  https://doi.org/10.1038/sj.onc.1203957 PubMedGoogle Scholar
  40. 40.
    Fallahi P, Ferrari SM, Vita R, Di Domenicantonio A, Corrado A, Benvenga S, Antonelli A (2014) Thyroid dysfunctions induced by tyrosine kinase inhibitors. Expert Opin Drug Saf 13(6):723–733.  https://doi.org/10.1517/14740338.2014.913021 PubMedGoogle Scholar
  41. 41.
    Ahmadieh H, Salti I (2013) Tyrosine kinase inhibitors induced thyroid dysfunction: a review of its incidence, pathophysiology, clinical relevance, and treatment. Biomed Res Int 2013:9.  https://doi.org/10.1155/2013/725410 Google Scholar
  42. 42.
    Tsou RC, Bence KK (2012) The genetics of PTPN1 and obesity: insights from mouse models of tissue-specific PTP1B deficiency. J Obes 2012:926857.  https://doi.org/10.1155/2012/926857 PubMedPubMedCentralGoogle Scholar
  43. 43.
    Michalaki MA, Vagenakis AG, Leonardou AS, Argentou MN, Habeos LG, Makri MG, Psyrogiannis AI, Kalfarentzos FE, Kyriazopoulou VE (2006) Thyroid function in humans with morbid obesity. Thyroid 16(1):73–78.  https://doi.org/10.1089/thy.2006.16.73 PubMedGoogle Scholar
  44. 44.
    Mueller A, Schofl C, Dittrich R, Cupisti S, Oppelt PG, Schild RL, Beckmann MW, Haberle L (2009) Thyroid-stimulating hormone is associated with insulin resistance independently of body mass index and age in women with polycystic ovary syndrome. Hum Reprod 24(11):2924–2930.  https://doi.org/10.1093/humrep/dep285 PubMedGoogle Scholar
  45. 45.
    Bakker SJL, ter Maaten JC, Popp-Snijders C, Slaets JPJ, Heine RJ, Gans ROB (2001) The relationship between thyrotropin and low density lipoprotein cholesterol is modified by insulin sensitivity in healthy euthyroid subjects. J Clin Endocr Metab 86(3):1206–1211.  https://doi.org/10.1210/Jc.86.3.1206 PubMedGoogle Scholar
  46. 46.
    Chubb SAP, Davis WA, Davis TME (2005) Interactions among thyroid function, insulin sensitivity, and serum lipid concentrations: The Fremantle Diabetes Study. J Clin Endocr Metab 90(9):5317–5320.  https://doi.org/10.1210/jc.2005-0298 PubMedGoogle Scholar
  47. 47.
    Duarte GC, Cendoroglo MS, Araujo LM, Almada Filho Cde M (2015R) Association between increased serum thyrotropin concentration and the oldest old: what do we know? Einstein (Sao Paulo) 13(1):117–121.  https://doi.org/10.1590/S1679-45082015RW2874 Google Scholar
  48. 48.
    Antunes TT, Gagnon A, Chen B, Pacini F, Smith TJ, Sorisky A (2006) Interleukin-6 release from human abdominal adipose cells is regulated by thyroid-stimulating hormone: effect of adipocyte differentiation and anatomic depot. Am J Physiol Endocrinol Metab 290(6):1140–1144.  https://doi.org/10.1152/ajpendo.00516.2005 Google Scholar
  49. 49.
    Li QL, Yang GZ, Wang Y, Zhang XP, Sang Q, Wang HA, Zhao XZ, Xing QH, He L, Wang L (2011) Common genetic variation in the 3'-untranslated region of gonadotropin-releasing hormone receptor regulates gene expression in cella and is associated with thyroid function, insulin secretion as well as insulin sensitivity in polycystic ovary syndrome patients. Hum Genet 129(5):553–561.  https://doi.org/10.1007/s00439-011-0954-4 PubMedGoogle Scholar
  50. 50.
    Porcu, E., Medici, M., Pistis, G., Volpato, C.B., Wilson, S.G., Cappola, A.R., Bos, S.D., Deelen, J., den Heijer, M., Freathy, R.M., Lahti, J., Liu, C.Y., Lopez, L.M., Nolte, I.M., O’Connell, J.R., Tanaka, T., Trompet, S., Arnold, A., Bandinelli, S., Beekman, M., Bohringer, S., Brown, S.J., Buckley, B.M., Camaschella, C., de Craen, A.J.M., Davies, G., de Visser, M.C.H., Ford, I., Forsen, T., Frayling, T.M., Fugazzola, L., Gogele, M., Hattersley, A.T., Hermus, A.R., Hofman, A., Houwing-Duistermaat, J.J., Jensen, R.A., Kajantie, E., Kloppenburg, M., Lim, E.M., Masciullo, C., Mariotti, S., Minelli, C., Mitchell, B.D., Nagaraja, R., Netea-Maier, R.T., Palotie, A., Persani, L., Piras, M.G., Psaty, B.M., Raikkonen, K., Richards, J.B., Rivadeneira, F., Sala, C., Sabra, M.M., Sattar, N., Shields, B.M., Soranzo, N., Starr, J.M., Stott, D.J., Sweep, F.C.G.J., Usala, G., van der Klauw, M.M., van Heemst, D., van Mullem, A., Vermeulen, S.H., Visser, W.E., Walsh, J.P., Westendorp, R.G.J., Widen, E., Zhai, G.J., Cucca, F., Deary, I.J., Eriksson, J.G., Ferrucci, L., Fox, C.S., Jukema, J.W., Kiemeney, L.A., Pramstaller, P.P., Schlessinger, D., Shuldiner, A.R., Slagboom, E.P., Uitterlinden, A.G., Vaidya, B., Visser, T.J., Wolffenbuttel, B.H.R., Meulenbelt, I., Rotter, J.I., Spector, T.D., Hicks, A.A., Toniolo, D., Sanna, S., Peeters, R.P., Naitza, S.: A Meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function. Plos Genet (2013).  https://doi.org/10.1371/journal.pgen.1003266 PubMedPubMedCentralGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2019

Authors and Affiliations

  • M. Popović
    • 1
  • A. Matana
    • 1
  • V. Torlak
    • 2
  • T. Boutin
    • 3
  • D. Brdar
    • 2
  • I. Gunjača
    • 1
  • D. Kaličanin
    • 1
  • I. Kolčić
    • 4
  • V. Boraska Perica
    • 1
  • A. Punda
    • 2
  • O. Polašek
    • 4
  • M. Barbalić
    • 1
  • C. Hayward
    • 3
  • T. Zemunik
    • 1
    Email author
  1. 1.Department of Medical BiologyUniversity of Split, School of MedicineSplitCroatia
  2. 2.Department of Nuclear MedicineUniversity Hospital SplitSplitCroatia
  3. 3.MRC Human Genetics Unit, Institute of Genetics and Molecular MedicineUniversity of Edinburgh, Western General HospitalEdinburghUnited Kingdom
  4. 4.Department of Public HealthUniversity of Split, School of Medicine SplitSplitCroatia

Personalised recommendations