Advertisement

Cadmium exposure alters steroid receptors and proinflammatory cytokine levels in endothelial cells in vitro: a potential mechanism of endocrine disruptor atherogenic effect

  • S. Fittipaldi
  • V. M. Bimonte
  • A. Soricelli
  • A. Aversa
  • A. Lenzi
  • E. A. Greco
  • S. MigliaccioEmail author
Original Article

Abstract

Background

Cadmium (Cd) is a widespread environmental pollutant that causes alterations in human health acting as endocrine disruptor. Recent data suggest that cardiovascular system might be a contamination target tissue, since Cd is found in atheromatic plaques. Thus, the purpose of this study was to evaluate the consequence of Cd exposure of endothelial cells in vitro to evaluate detrimental effect in vascular system by a potential sex-steroid hormone receptor-dependent mechanism(s).

Methods

To this aim, Human Umbilical Vein Endothelial Cells (HUVECs) were cultured and exposed to several concentrations of cadmium chloride (CdCl2) for different interval times.

Results

CdCl2 exposure of HUVECs induced a significant increase of ERβ and Cyp19a1 at both mRNA and protein levels, while a drastic dose-dependent decrease of AR expression level was observed after 24 h of exposure. On the contrary, an increase of PhARser308 as well as a reduction of PhGSK-3βser9 and PhAKTser473 was detected after 1 h treatment. This effect was consistently reduced by GSK inhibition. Furthermore, CdCl2 abolished DHT-induced cell proliferation in HUVECs suggesting an antagonist-like effect of Cd on AR-mediated signaling. Remarkable, after 6 h CdCl2—treatment, a relevant increase in TNF-α, IL-6 and IL-8 mRNA was observed and this effect was blocked by the presence of an ERβ-selective antagonist. Moreover, Cd-induced TxR1 overexpression, likely, correlated with the activation of p38 MAPK/NF-κB pathway.

Conclusion

In conclusion, our study demonstrates for the first time that Cd alters sex-steroid hormone receptors level and activity likely affecting intracellular signaling linked to a proinflammatory state in endothelial cells. This alteration might possibly lead to endothelial cell injury and vascular dysfunction and could be a mechanism of gender-specific atherogenic damages induced by endocrine disruptors and, thus, induce atherogenic events with increased risk of cardiovascular diseases in individuals exposed to this endocrine disruptor.

Keywords

Cadmium Endocrine disruptor Androgen receptor Estrogen receptor and cardiovascular diseases Cytokines Gender 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent was needed since no human studies are included in the manuscript.

Supplementary material

40618_2018_982_MOESM1_ESM.jpg (188 kb)
Supplementary material 1 (JPEG 189 kb)
40618_2018_982_MOESM2_ESM.pdf (145 kb)
Supplementary material 1 (PDF 146 kb)

References

  1. 1.
    Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164PubMedPubMedCentralGoogle Scholar
  2. 2.
    Brama M, Gnessi L, Basciani S, Cerulli N, Politi L, Spera G, Mariani S, Cherubini S, Scotto d’Abusco A, Scandurra R, Migliaccio S (2007) Cadmium induces mitogenic signaling in breast cancer cell by an ERβ-dependent mechanism. Mol Cell Endocrinol 264(1–2):102–108CrossRefGoogle Scholar
  3. 3.
    World Health Organization (2011) Evaluation of certain food additive and contaminants. World Health Organ Tech Rep Ser 960:1–226Google Scholar
  4. 4.
    EFSA (2011) Statement on tolerable weekly intake for cadmium Efsa panel on contaminants in the food chain (CONTAM). EFSA J 9:1975Google Scholar
  5. 5.
    Mortada WI, Sobh MA, El Defrawy MM (2004) Lead and mercury from smoking and its impact on renal integrity. Med Sci Monit 10:CR112–CR116PubMedGoogle Scholar
  6. 6.
    Thévenod F, Lee WK (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87(10):1743–1786CrossRefGoogle Scholar
  7. 7.
    Papa V, Wannenes F, Crescioli C, Caporossi D, Lenzi A, Migliaccio S, Di Luigi L (2014) The environmental pollutant cadmium induces homeostasis alteration in muscle cells in vitro. J Endocrinol Invest 37(11):1073–1080CrossRefGoogle Scholar
  8. 8.
    Papa V, Bimonte VM, Wannenes F, D’Abusco AS, Fittipaldi S, Scandurra R, Politi L, Crescioli C, Lenzi A, Di Luigi L, Migliaccio S (2015) The endocrine disruptor cadmium alters human osteoblast-like Saos-2 cells homeostasis in vitro by alteration of Wnt/β-catenin pathway and activation of caspases. J Endocrinol Invest 38(12):1345–1356CrossRefGoogle Scholar
  9. 9.
    Samarghandian S, Azimi-Nezhad M, Shabestari MM, Azad FJ, Farkhondeh T, Bafandeh F (2015) Effect of chronic exposure to cadmium on serum lipid, lipoprotein and oxidative stress indices in male rats. Interdiscip Toxicol 8(3):151–154CrossRefGoogle Scholar
  10. 10.
    Amzal B, Julin B, Vahter M, Wolk A, Johanson G, Akesson A (2009) Population toxicokinetic modeling of cadmium for health risk assessment. Environ Health Perspect 117(8):1293–1301CrossRefGoogle Scholar
  11. 11.
    Satarug S, Garrett SH, Sens MA, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118(2):182–190CrossRefGoogle Scholar
  12. 12.
    Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238(3):215–220CrossRefGoogle Scholar
  13. 13.
    Messner B, Knoflach M, Seubert A, Ritsch A, Pfaller K, Hen-derson B, Shen YH, Zeller I, Willeit J, Laufer G, Wick G, Kiechl S, Bernhard D (2009) Cadmium is a novel and independent risk factor for early atherosclerosis mechanisms and in vivo relevance. Arterioscler Thromb Vasc Biol 29(9):1392–1398CrossRefGoogle Scholar
  14. 14.
    Tellez-Plaza M, Jones MR, Dominguez-Lucas A, Guallar E, Navas-Acien A (2013) Cadmium exposure and clinical cardiovascular disease: a systematic review. Curr Atheroscler Rep 15(10):356CrossRefGoogle Scholar
  15. 15.
    Almenara CC, Broseghini-Filho GB, Vescovi MV, Angeli JK, Faria Tde O, Stefanon I, Vassallo DV, Padilha AS (2013) Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta. PLoS One 8(7):e68418CrossRefGoogle Scholar
  16. 16.
    Angeli JK, Cruz Pereira CA, de Oliveira Faria T, Stefanon I, Padilha AS, Vassallo DV (2013) Cadmium exposure induces vascular injury due to endothelial oxidative stress: the role of local angiotensin II and COX-2. Free Radic Biol Med 65:838–848CrossRefGoogle Scholar
  17. 17.
    Fagerberg B, Kjelldahl J, Sallsten G, Barregard L, Forsgard N, Österberg K, Hultén LM, Bergström G (2016) Cadmium exposure as measured in blood in relation to macrophage density in symptomatic atherosclerotic plaques from human carotid artery. Atherosclerosis 249:209–214.  https://doi.org/10.1016/j.atherosclerosis.2016.01.011 CrossRefPubMedGoogle Scholar
  18. 18.
    Tinkov AA, Filippini T, Ajsuvakova OP, Skalnaya MG, Aaseth J, Bjørklund G, Gatiatulina ER, Popova EV, Nemereshina ON, Huang PT, Vinceti M, Skalny AV (2018) Cadmium and atherosclerosis: a review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environ Res 162:240–260CrossRefGoogle Scholar
  19. 19.
    Hecht EM, Arheart KL, Lee DJ, Hennekens CH, Hlaing WM (2016) Interrelation of cadmium, smoking, and cardiovascular disease (from the National Health and Nutrition Examination Survey). Am J Cardiol 118(2):204–209CrossRefGoogle Scholar
  20. 20.
    Wei T, Jia J, Wada Y, Kapron CM, Liu J (2017) Dose dependent effects of cadmium on tumor angiogenesis. Oncotarget 8(27):44944–44959PubMedPubMedCentralGoogle Scholar
  21. 21.
    Prozialeck WC, Edwards JR, Woods JM (2006) The vascular endothelium as a target of cadmium toxicity. Life Sci 79(16):1493–1506CrossRefGoogle Scholar
  22. 22.
    Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB (2009) Cadmium—a metallohormone? Toxicol Appl Pharmacol 238(3):266–271CrossRefGoogle Scholar
  23. 23.
    Garcia-Morales P, Saceda M, Kenney N, Kim N, Salomon DS, Gottardis MM, Solomon HB, Sholler PF, Jordan VC, Martin MB (1994) Effect of cadmium on estrogen receptor levels and estrogen-induced responses in human breast cancer cells. J Biol Chem 269(24):16896–16901PubMedGoogle Scholar
  24. 24.
    Stoica A, Katzenellenbogen BS, Martin MB (2000) Activation of estrogen receptor-alpha by the heavy metal cadmium. Mol Endocrinol 14(4):545–553PubMedGoogle Scholar
  25. 25.
    Martin MB, Voeller HJ, Gelmann EP, Lu J, Stoica EG, Hebert EJ, Reiter R, Singh B, Danielsen M, Pentecost E, Stoica A (2002) Role of cadmium in the regulation of AR gene expression and activity. Endocrinology 143(1):263–275CrossRefGoogle Scholar
  26. 26.
    Aquino NB, Sevigny MB, Sabangan J, Louie MC (2012) The role of cadmium and nickel in estrogen receptor signaling and breast cancer: metalloestrogens or not? J Environ Sci Health C 30(3):189–224CrossRefGoogle Scholar
  27. 27.
    Wu R, Cui Y, Yuan X, Yuan H, Wang Y, He J, Zhao J, Peng S (2014) SUMO-specific protease 1 modulates cadmium-augmented transcriptional activity of androgen receptor (AR) by reversing AR SUMOylation. Toxicol Lett 229(2):405–413CrossRefGoogle Scholar
  28. 28.
    Siewit CL, Gengler B, Vegas E, Puckett R, Louie MC (2010) Cadmium promotes breast cancer cell proliferation by potentiating the interaction between ERβ and c-Jun. Mol Endocrinol 24(5):981–989CrossRefGoogle Scholar
  29. 29.
    Johnson MD, Kenney N, Stoica A, Hilakivi-Clarke L, Singh B, Chepko G, Clarke R, Sholler PF, Lirio AA, Foss C, Reiter R, Trock B, Paik S, Martin MB (2003) Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med 9(8):1081–1084CrossRefGoogle Scholar
  30. 30.
    Nishijo M, Satarug S, Honda R, Tsuritani I, Aoshima K (2004) The gender differences in health effects of environmental cadmium exposure and potential mechanisms. Mol Cell Biochem 255(1–2):87–92CrossRefGoogle Scholar
  31. 31.
    Pillet S, D’Elia M, Bernier J, Bouquegneau JM, Fournier M, Cyr DG (2006) Immunomodulatory effects of estradiol and cadmium in adult female rats. Toxicol Sci 92(2):423–432CrossRefGoogle Scholar
  32. 32.
    Barregard L, Sallsten G, Fagerberg B, Borné Y, Persson M, Hedblad B, Engström G (2016) Blood cadmium levels and incident cardiovascular events during follow-up in a population-based cohort of Swedish adults: the Malmö Diet and Cancer Study. Environ Health Perspect 124(5):594–600CrossRefGoogle Scholar
  33. 33.
    Cheng L, Zhang B, Zheng T, Hu J, Zhou A, Bassig BA, Xia W, Savitz DA, Buka S, Xiong C, Braun JM, Zhang Y, Zhou Y, Pan X, Wu C, Wang Y, Qian Z, Yang A, Romano ME, Shi K, Xu S, Li Y (2017) Critical windows of prenatal exposure to cadmium and size at birth. Int J Environ Res Public Health 14(1):58CrossRefGoogle Scholar
  34. 34.
    Koryakina Y, Ta HQ, Gioeli D (2014) Androgen receptor phosphorylation: biological context and functional consequences. Endocr Relat Cancer 21(4):T131–T145CrossRefGoogle Scholar
  35. 35.
    Zong H, Chi Y, Wang Y, Yang Y, Zhang L, Chen H, Jiang J, Li Z, Hong Y, Wang H, Yun X, Gu J (2007) Cyclin D3/CDK11p58 complex is involved in the repression of androgen receptor. Mol Cell Biol 27(20):7125–7142CrossRefGoogle Scholar
  36. 36.
    Salas TR, Kim J, Vakar-Lopez F, Sabichi AL, Troncoso P, Jenster G, Kikuchi A, Chen SY, Shemshedini L, Suraokar M, Logothetis CJ, DiGiovanni J, Lippman SM, Menter DG (2004) Glycogen synthase kinase-3 beta is involved in the phosphorylation and suppression of androgen receptor activity. J Biol Chem 279(18):19191–19200CrossRefGoogle Scholar
  37. 37.
    Cai J, Hong Y, Weng C, Tan C, Imperato-McGinley J, Zhu YS (2011) Androgen stimulates endothelial cell proliferation via an androgen receptor/VEGF/cyclin A-mediated mechanism. Am J Physiol Heart Circ Physiol 300(4):H1210–H1221CrossRefGoogle Scholar
  38. 38.
    Colacino JA, Arthur AE, Ferguson KK, Rozek LS (2014) Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress. Environ Res 131:6–12CrossRefGoogle Scholar
  39. 39.
    Dong F, Guo F, Li L, Guo L, Hou Y, Hao E, Yan S, Allen TD, Liu J (2014) Cadmium induces vascular permeability via activation of the p38 MAPK pathway. Biochem Biophys Res Commun 450(1):447–452CrossRefGoogle Scholar
  40. 40.
    Olszowski T, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2012) Pro-inflammatory properties of cadmium. Acta Biochim Pol 59(4):475–482PubMedGoogle Scholar
  41. 41.
    Kuwano T, Nakao S, Yamamoto H, Tsuneyoshi M, Yamamoto T, Kuwano M, Ono M (2004) Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J 18(2):300–310CrossRefGoogle Scholar
  42. 42.
    Sakurai A, Nishimoto M, Himeno S, Imura N, Tsujimoto M, Kunimoto M, Hara S (2005) Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2. al cells: role of NF-E2-related factor-2. J Cell Physiol 203(3):529–537CrossRefGoogle Scholar
  43. 43.
    Torres-Estay V, Carreño DV, San Francisco IF, Sotomayor P, Godoy AS, Smith GJ (2015) Androgen receptor in human endothelial cells. J Endocrinol 224(3):R131–R137CrossRefGoogle Scholar
  44. 44.
    Wang X, Lee SO, Xia S, Jiang Q, Luo J, Li L, Yeh S, Chang C (2013) Endothelial cells enhance prostate cancer metastasis via IL-6 → androgen receptor → TGF-β → MMP-9 signals. Mol Cancer Ther 12(6):1026–1037CrossRefGoogle Scholar
  45. 45.
    Skurk C, Maatz H, Rocnik E, Bialik A, Force T, Walsh K (2005) Glycogen-Synthase Kinase3beta/beta-catenin axis promotes angiogenesis through activation of vascular endothelial growth factor signaling in endothelial cells. Circ Res 96(3):308–318CrossRefGoogle Scholar
  46. 46.
    Eto M, Kouroedov A, Cosentino F, Lüscher TF (2005) Glycogen synthase kinase-3 mediates endothelial cell activation by tumor necrosis factor-alpha. Circulation 112(9):1316–1322CrossRefGoogle Scholar
  47. 47.
    Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32(4–5):577–595CrossRefGoogle Scholar
  48. 48.
    Kim S, Cheon H, Kim SM, Kim YY (2018) GSK-3β-mediated regulation of cadmium-induced cell death and survival. Cell Mol Biol Lett 12(23):9CrossRefGoogle Scholar
  49. 49.
    Kim J, Lim W, Ko Y, Kwon H, Kim S, Kim O, Park G, Choi H, Kim O (2012) The effects of cadmium on VEGF-mediated angiogenesis in HUVECs. J Appl Toxicol 32(5):342–349CrossRefGoogle Scholar
  50. 50.
    Nair AR, DeGheselle O, Smeets K, Van Kerkhove E, Cuypers A (2013) Cadmium-induced pathologies: where is the oxidative balance lost (or not)? Int J Mol Sci 14(3):6116–6143CrossRefGoogle Scholar
  51. 51.
    Go Y-M, Orr M, Jones DP (2013) Increased nuclear thioredoxin-1 potentiates cadmium-induced cytotoxicity. Toxicol Sci 131(1):84–94CrossRefGoogle Scholar
  52. 52.
    Sandbichler AM, Höckner M (2016) Cadmium protection strategies—a hidden trade-off? Int J Mol Sci 7(1):139CrossRefGoogle Scholar
  53. 53.
    Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208CrossRefGoogle Scholar
  54. 54.
    Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927–940CrossRefGoogle Scholar
  55. 55.
    Nemmiche S (2017) Oxidative signaling response to cadmium exposure. Toxicol Sci 156(1):4–10PubMedGoogle Scholar
  56. 56.
    Wolf MB, Baynes JW (2007) Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. Biometals 20(1):73–81CrossRefGoogle Scholar
  57. 57.
    Knoflach M, Messner B, Shen YH, Frotschnig S, Liu G, Pfaller K, Wang X, Matosevic B, Willeit J, Kiechl S, Laufer G, Bernhard D (2011) Non-toxic cadmium concentrations induce vascular inflammation and promote atherosclerosis. Circ J 75(10):2491–2495CrossRefGoogle Scholar
  58. 58.
    Sakurai A, Yuasa K, Shoji Y, Himeno S, Tsujimoto M, Kunimoto M, Imura N, Hara S (2004) Overexpression of thioredoxin reductase 1 regulates NF-kappa B activation. J Cell Physiol 198(1):22–30CrossRefGoogle Scholar
  59. 59.
    Zhou Z, Lu YH, Pi HF, Gao P, Li M, Zhang L, Pei LP, Mei X, Liu L, Zhao Q, Qin QZ, Chen Y, Jiang YM, Zhang ZH, Yu ZP (2016) Cadmium exposure is associated with the prevalence of dyslipidemia. Cell Physiol Biochem 40(3–4):633–643CrossRefGoogle Scholar
  60. 60.
    Seok SM, Park DH, Kim YC, Moon CH, Jung YS, Baik EJ, Moon CK, Lee SH (2006) COX-2 is associated with cadmium-induced ICAM-1 expression in cerebrovascular endothelial cells. Toxicol Lett 165(3):212–220CrossRefGoogle Scholar
  61. 61.
    Park SL, Kim YM, Ahn JH, Lee SH, Baik EJ, Moon CH, Jung YS (2009) Cadmium stimulates the expression of vascular cell adhesion molecule-1 (VCAM-1) via p38 mitogen-activated protein kinase (MAPK) and JNK activation in cerebrovascular endothelial cells. J Pharmacol Sci 110(3):405–409CrossRefGoogle Scholar
  62. 62.
    Fagerberg B, Borné Y, Barregard L, Sallsten G, Forsgard N, Hedblad B, Persson M, Engström G (2017) Cadmium exposure is associated with soluble urokinase plasminogen activator receptor, a circulating marker of inflammation and future cardiovascular disease. Environ Res 152:185–191CrossRefGoogle Scholar
  63. 63.
    Szuster-Ciesielska A, Lokaj I, Kandefer-Szerszeń M (2000) The influence of cadmium and zinc ions on the interferon and tumor necrosis factor production in bovine aorta endothelial cells. Toxicology 145(2–3):135–145CrossRefGoogle Scholar
  64. 64.
    Riemschneider S, Herzberg M, Lehmann J (2015) Subtoxic doses of cadmium modulate inflammatory properties of murine RAW 264.7 macrophages. Biomed Res Int 2015:295303CrossRefGoogle Scholar
  65. 65.
    Phuagkhaopong S, Ospondpant D, Kasemsuk T, Sibmooh N, Soodvilai S, Power C, Vivithanaporn P (2017) Cadmium-induced IL-6 and IL-8 expression and release from astrocytes are mediated by MAPK and NF-κB pathways. Neurotoxicology 60:82–91CrossRefGoogle Scholar
  66. 66.
    Syeda F, Grosjean J, Houliston RA, Keogh RJ, Carter TD, Paleolog E, Wheeler-Jones CP (2006) Cyclooxygenase-2 induction and prostacyclin release by protease-activated receptors in endothelial cells require cooperation between mitogen-activated protein kinase and NF-kappaB pathways. J Biol Chem 281(17):11792–11804CrossRefGoogle Scholar
  67. 67.
    Kempe S, Kestler H, Lasar A, Wirth T (2005) NF-kappaB controls the globalpro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res 33(16):5308–5319CrossRefGoogle Scholar
  68. 68.
    Saha RN, Jana M, Pahan K (2007) MAPK p38 regulates transcriptional activity of NF-kappaB in primary human astrocytes via acetylation of p65. J Immunol 179(10):7101–7109CrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2018

Authors and Affiliations

  1. 1.IRCCS SDNNaplesItaly
  2. 2.Department of Movement, Human and Health Sciences, Section of Health Sciences“Foro Italico” University of RomeRomeItaly
  3. 3.Department of Experimental and Clinical MedicineMagna Græcia UniversityCatanzaroItaly
  4. 4.Department of Motor Sciences and HealthinessUniversity of Naples ParthenopeNaplesItaly
  5. 5.Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition“Sapienza” University of RomeRomeItaly

Personalised recommendations