Advertisement

Journal of Endocrinological Investigation

, Volume 42, Issue 1, pp 19–25 | Cite as

Investigating the effect of testosterone by itself and in combination with letrozole on 1,25-dihydroxy vitamin D and FGF23 in male rats

  • F. Saki
  • S. R. Kasaee
  • F. Sadeghian
  • F. Koohpeyma
  • GH. R. OmraniEmail author
Original Article
  • 93 Downloads

Abstract

Background

Testosterone deficiency might be associated with vitamin D levels in hypogonadal men, but it is not clear whether testosterone can affect vitamin D and fibroblast growth factor-23 (FGF23), either directly or indirectly via aromatization to estradiol. We aimed to investigate the role of testosterone on vitamin D metabolism and serum FGF23 in male rats.

Methods

A total of 48 male rats were divided into 4 equal groups: sham; O, orchiectomy; O + T, orchiectomized rats treated with testosterone; and O + T + L, orchiectomized rats treated with combination of testosterone and letrozole. We compare the vitamin D metabolism biochemical parameters in these four groups, before and after the study.

Results

We detected a significant reduction in 25-hydroxyvitamin D (25(OH)D), vitamin D binding protein (DBP), FGF23, and 1,25-dihydroxyvitamin D (1,25(OH)2D) serum level in O group compared to sham group (p = 0.004, p = 0.009, p < 0.001 and p < 0.001, respectively), and a significant increase in serum phosphorus, parathyroid hormone (PTH), and alkaline phosphatase (ALP) levels in orchiectomized rats in comparison to sham group (p < 0.001, p = 0.022, and p = 0.006, respectively). However, these changes were corrected by testosterone replacement in O + T and O + T + L groups. In addition, we found that DBP and 1,25(OH)2D serum levels were significantly higher in O + T group in comparison to O + T + L group (p = 0.030 and p = 0.026, respectively).

Conclusions

Testosterone plays a significant role on regulating 25(OH)D, DBP, FGF23, phosphate (Phos), PTH, and 1,25(OH)2D serum levels in male rats. Also, testosterone has a potent effect on 1,25(OH)2D and DBP by its conversion to estradiol.

Keywords

Testosterone FGF23 DBP 1,25(OH)2D 

Notes

Acknowledgements

The authors wish to thank Mr. H. Argasi at the Research Consultation Center (RCC) at Shiraz University of Medical Sciences for his invaluable assistance in editing this manuscript.

Funding

There is no financial support.

Compliance with ethical standards

Conflict of interest

Gholamhossein Ranjbar Omrani, Seyed Reza Kasaee, Farhad Koohpeima and Forough Saki declare that they have no conflict of interest.

Ethical approval

The local ethics committee of the Shiraz University of Medical Sciences and vice-chancellor of research at SUMS approved this study with ID:95-01-01-12923. The experiment was conducted in accordance with the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines on the use and care of research animals. All procedures were approved by the local ethic and experimentation committee of Shiraz university of Medical Sciences.

Informed consent

For this type of study formal consent is not required.

References

  1. 1.
    Holick MF (2006) Resurrection of vitamin D deficiency and rickets. J Clin Investig 116(8):2062PubMedGoogle Scholar
  2. 2.
    Plum LA, DeLuca HF (2010) Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov 9(12):941–955PubMedPubMedCentralGoogle Scholar
  3. 3.
    Baserga R, Hongo A, Rubini M, Prisco M, Valentinis B (1997) The IGF-I receptor in cell growth, transformation and apoptosis. Biochim Biophys Acta (BBA) Rev Cancer 1332(3):F105–F126Google Scholar
  4. 4.
    Chen WR, Liu ZY, Shi Y, Wang H, Sha Y, Dai Chen Y (2014) Vitamin D and nifedipine in the treatment of Chinese patients with grades I–II essential hypertension: a randomized placebo-controlled trial. Atherosclerosis 235(1):102–109PubMedGoogle Scholar
  5. 5.
    Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29(6):726–776PubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhen D, Liu L, Guan C, Zhao N, Tang X (2015) High prevalence of vitamin D deficiency among middle-aged and elderly individuals in northwestern China: its relationship to osteoporosis and lifestyle factors. Bone 71:1–6PubMedGoogle Scholar
  7. 7.
    Kamelian T, Saki F, Jeddi M, Dabbaghmanesh M, Omrani G (2017) Effect of Cholecalciferol therapy on serum FGF23 in vitamin D deficient patients: a randomized clinical trial. J Endocrinol Investig 1–8Google Scholar
  8. 8.
    Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19(3):429–435PubMedGoogle Scholar
  9. 9.
    Liu S, Quarles LD (2007) How fibroblast growth factor 23 works. J Am Soc Nephrol 18(6):1637–1647PubMedGoogle Scholar
  10. 10.
    Mirza MA, Hansen T, Johansson L, Ahlström H, Larsson A, Lind L, Larsson TE (2009) Relationship between circulating FGF23 and total body atherosclerosis in the community. Nephrol Dial Transplant 24(10):3125–3131PubMedGoogle Scholar
  11. 11.
    Tripepi G, Kollerits B, Leonardis D, Yilmaz MI, Postorino M, Fliser D, Mallamaci F, Kronenberg F, Zoccali C (2015) Competitive interaction between fibroblast growth factor 23 and asymmetric dimethylarginine in patients with CKD. J Am Soc Nephrol 26(4):935–944PubMedGoogle Scholar
  12. 12.
    Sanger JM, Dabiri G, Mittal B, Kowalski M, Haddad J, Sanger J (1990) Disruption of microfilament organization in living nonmuscle cells by microinjection of plasma vitamin D-binding protein or DNase I. Proc Natl Acad Sci 87(14):5474–5478PubMedGoogle Scholar
  13. 13.
    Mendel CM (1989) The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev 10(3):232–274PubMedGoogle Scholar
  14. 14.
    Saki F, Dabbaghmanesh MH, Omrani GR, Bakhshayeshkaram M (2017) Vitamin D deficiency and its associated risk factors in children and adolescents in southern Iran. Public Health Nutr 20(10):1851–1856PubMedGoogle Scholar
  15. 15.
    Bolland MJ, Grey AB, Ames RW, Horne AM, Mason BH, Wattie DJ, Gamble GD, Bouillon R, Reid IR (2007) Age-, gender-, and weight-related effects on levels of 25-hydroxyvitamin D are not mediated by vitamin D binding protein. Clin Endocrinol 67(2):259–264Google Scholar
  16. 16.
    Blanton D, Han Z, Bierschenk L, Linga-Reddy MP, Wang H, Clare-Salzler M, Haller M, Schatz D, Myhr C, She J-X (2011) Reduced serum vitamin D-binding protein levels are associated with type 1 diabetes. Diabetes 60(10):2566–2570PubMedPubMedCentralGoogle Scholar
  17. 17.
    Overvad S, Bay K, Bojesen A, Gravholt C (2014) Low INSL3 in Klinefelter syndrome is related to osteocalcin, testosterone treatment and body composition, as well as measures of the hypothalamic–pituitary–gonadal axis. Andrology 2(3):421–427PubMedGoogle Scholar
  18. 18.
    Foresta C, Ruzza G, Mioni R, Meneghello A, Baccichetti C (1983) Testosterone and bone loss in Klinefelter syndrome. Horm Metab Res 15(01):56–57PubMedGoogle Scholar
  19. 19.
    Finkelstein JS, Klibanski A, Neer RM, Greenspan SL, Rosenthal DI, Crowley W Jr (1987) Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann Intern Med 106(3):354–361PubMedGoogle Scholar
  20. 20.
    Lee DM, Tajar A, Pye SR, Boonen S, Vanderschueren D, Bouillon R, O’Neill TW, Bartfai G, Casanueva FF, Finn JD (2012) Association of hypogonadism with vitamin D status: the European Male Ageing Study. Eur J Endocrinol 166(1):77–85PubMedGoogle Scholar
  21. 21.
    Tak YJ, Lee JG, Kim YJ, Park NC, Kim SS, Lee S, Cho BM, Kong EH, Jung DW, Yi YH (2015) Serum 25-hydroxyvitamin D levels and testosterone deficiency in middle-aged Korean men: a cross-sectional study. Asian J Androl 17(2):324PubMedGoogle Scholar
  22. 22.
    Nimptsch K, Platz EA, Willett WC, Giovannucci E (2012) Association between plasma 25-OH vitamin D and testosterone levels in men. Clin Endocrinol 77(1):106–112Google Scholar
  23. 23.
    Canguven O, Talib RA, El Ansari W, Yassin D-J, Al Naimi A (2017) Vitamin D treatment improves levels of sexual hormones, metabolic parameters and erectile function in middle-aged vitamin D deficient men. Aging Male 20(1):9–16PubMedGoogle Scholar
  24. 24.
    Tirabassi G, Cutini M, Muscogiuri G, delli Muti N, Corona G, Galdiero M, Pivonello R, Colao A, Balercia G (2017) Association between vitamin D and sperm parameters: clinical evidence. Endocrine 58(1):194–198PubMedGoogle Scholar
  25. 25.
    Rochira V, Faustini-Fustini M, Balestrieri A, Carani C (2000) Estrogen replacement therapy in a man with congenital aromatase deficiency: effects of different doses of transdermal estradiol on bone mineral density and hormonal parameters. J Clin Endocrinol Metab 85(5):1841–1845PubMedGoogle Scholar
  26. 26.
    Karp NA, Meehan TF, Morgan H, Mason JC, Blake A, Kurbatova N, Smedley D, Jacobsen J, Mott RF, Iyer V (2015) Applying the ARRIVE guidelines to an in vivo database. PLoS Biol 13(5):e1002151PubMedPubMedCentralGoogle Scholar
  27. 27.
    Heydarpour F, Amini B, Kalantari S, Rostami A, Heydarpour P (2007) Determination of sensitivity of male Wistar rats to an equal dose of ketamine/xylazine injection at anesthetic dose in a chronic model of hypernatremia in comparison with control group. Saudi Med J 28(10):1485–1488PubMedGoogle Scholar
  28. 28.
    Rouver WN, Delgado NTB, Menezes JB, Santos RL, Moyses MR (2015) Testosterone replacement therapy prevents alterations of Coronary vascular reactivity caused by hormone deficiency induced by castration. PLoS One 10(8):e0137111PubMedPubMedCentralGoogle Scholar
  29. 29.
    Negrea LA, Slatopolsky E, Dusso AS (1995) 1, 25-dihydroxyvitamin D synthesis in rat liver microsomes. Horm Metab Res 27(10):461–464PubMedGoogle Scholar
  30. 30.
    Bouillon R, Van Cromphaut S, Carmeliet G (2003) Intestinal calcium absorption: molecular vitamin D mediated mechanisms. J Cell Biochem 88(2):332–339PubMedGoogle Scholar
  31. 31.
    Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, Quarles LD (2006) Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17(5):1305–1315PubMedGoogle Scholar
  32. 32.
    Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J (2007) The parathyroid is a target organ for FGF23 in rats. J Clin Investig 117(12):4003PubMedGoogle Scholar
  33. 33.
    Funahashi H, Tanaka Y, Imai T, Wada M, Tsukamura K, Hayakawa Y, Matsuura N, Kikumori T, Oiwa M, Tominaga Y (1998) Parathyroid hormone suppression by 22-oxacalcitriol in the severe parathyroid hyperplasia. J Endocrinol Invest 21(1):43–47PubMedGoogle Scholar
  34. 34.
    Gioia A, Ceccoli L, Ronconi V, Turchi F, Marcheggiani M, Boscaro M, Giacchetti G, Balercia G (2014) Vitamin D levels and bone mineral density: are LH levels involved in the pathogenesis of bone impairment in hypogonadal men? J Endocrinol Invest 37(12):1225–1231PubMedGoogle Scholar
  35. 35.
    Ferlin A, Selice R, Carraro U, Foresta C (2013) Testicular function and bone metabolism—beyond testosterone. Nat Rev Endocrinol 9(9):548PubMedGoogle Scholar
  36. 36.
    Foresta C, Selice R, De Toni L, Di Mambro A, Carraro U, Plebani M, Garolla A (2013) Altered bone status in unilateral testicular cancer survivors: role of CYP2R1 and its luteinizing hormone-dependency. J Endocrinol Invest 36(6):379–384PubMedGoogle Scholar
  37. 37.
    Aksnes L, Aarskog D (1982) Plasma concentrations of vitamin D metabolites in puberty: effect of sexual maturation and implications for growth. J Clin Endocrinol Metab 55(1):94–101PubMedGoogle Scholar
  38. 38.
    Francis RM, Peacock M, Aaron J, Selby P, Taylor G, Thompson J, Marshall D, Horsman A (1986) Osteoporosis in hypogonadal men: role of decreased plasma 1, 25-dihydroxyvitamin D, calcium malabsorption, and low bone formation. Bone 7(4):261–268PubMedGoogle Scholar
  39. 39.
    Powe CE, Ricciardi C, Berg AH, Erdenesanaa D, Collerone G, Ankers E, Wenger J, Karumanchi SA, Thadhani R, Bhan I (2011) Vitamin D–binding protein modifies the vitamin D–bone mineral density relationship. J Bone Miner Res 26(7):1609–1616PubMedPubMedCentralGoogle Scholar
  40. 40.
    Pedersen L, Christensen L, Pedersen SM, Andersen M (2017) Reduction of calprotectin and phosphate during testosterone therapy in aging men: a randomized controlled trial. J Endocrinol Invest 40(5):529–538PubMedGoogle Scholar
  41. 41.
    Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, Collins JF, Haussler MR, Ghishan FK (2005) 1α, 25-dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289(6):G1036–G1042PubMedGoogle Scholar
  42. 42.
    Barthel TK, Mathern DR, Whitfield GK, Haussler CA, Hopper HA, Hsieh J-C, Slater SA, Hsieh G, Kaczmarska M, Jurutka PW (2007) 1, 25-Dihydroxyvitamin D 3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol 103(3):381–388PubMedGoogle Scholar
  43. 43.
    Dabaja AA, Bryson CF, Schlegel PN, Paduch DA (2015) The effect of hypogonadism and testosterone-enhancing therapy on alkaline phosphatase and bone mineral density. BJU Int 115(3):480–485PubMedGoogle Scholar
  44. 44.
    Camozzi V, Bonanni G, Frigo A, Piccolo M, Ferasin S, Zaninotto M, Boscaro M, Luisetto G (2015) Effect of a single injection of testosterone enanthate on 17β estradiol and bone turnover markers in hypogonadal male patients. J Endocrinol Invest 38(4):389–397PubMedGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2018

Authors and Affiliations

  • F. Saki
    • 1
  • S. R. Kasaee
    • 1
  • F. Sadeghian
    • 1
  • F. Koohpeyma
    • 1
  • GH. R. Omrani
    • 1
    Email author
  1. 1.Shiraz Endocrinology and Metabolism Research CenterShiraz University of Medical SciencesShirazIran

Personalised recommendations