Journal of Endocrinological Investigation

, Volume 41, Issue 5, pp 557–566 | Cite as

The rs2910164 variant is associated with reduced miR-146a expression but not cytokine levels in patients with type 2 diabetes

Original Article
  • 122 Downloads

Abstract

Purpose

Previous reports have demonstrated that genetic variations in microRNAs regulome could affect microRNAs-mediated regulation. Therefore, in the present study we were aimed at (1) comparison of microRNA 146-a (miR-146a) peripheral blood mononuclear cells (PBMCs) and plasma levels between diabetic patients and controls, and (2) investigating the possible association of rs2910164 with miR-146a and its related target genes expression and also serum cytokine levels.

Methods

The study population consisted of 60 subjects including 30 type 2 diabetes (T2D) patients and 30 controls with determined genotypes for rs2910164. The RNA expression levels were determined by real-time PCR. Moreover, TNF-α, IL-6, IL-10 and IL-1β serum levels were measured using ELISA method.

Results

Our results showed that the miR-146a expression levels were significantly decreased in PBMCs (P = 0.004) and plasma (P = 0.008) samples of patients with T2D compared to healthy participants. In addition, we observed that IRAK1 mRNA expression—but not TLR4, TRAF6 and NFĸB—was significantly increased in patients with T2D compared to controls (P = 0.028). The relative expression levels of miR-146a in plasma and PBMCs samples of diabetic patients with the rs2910164 GG genotypes were significantly higher than that in CC (P < 0.05). Moreover, no significant differences were found in miR-146a targets and cytokine levels between the rs2910164 different genotypes.

Conclusion

Our study demonstrated that miR-146a circulating levels were significantly elevated in controls compared with T2D patients. In addition, we identified that rs2910164-C allele is associated with reduced expression levels of the miR-146a but not its mRNAs targets and cytokine levels in diabetic patients.

Keywords

MicroRNAs miR-146a rs2910164 Cytokines Diabetes 

Notes

Acknowledgements

We greatly appreciate the assistance provided by the staff of the Endocrinology and Metabolism Research Institute of Tehran University of Medical Sciences. We also thank all volunteers for their participation in the study. This work was financially supported by a Grant (93-02-30-25172) from the Deputy of Research, Tehran University of Medical Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by Tehran University of Medical Sciences Ethics Committee and performed in compliance with Helsinki declaration.

Informed consent

Written informed consent was obtained from all subjects before enrollment in the study.

References

  1. 1.
    Guariguata L, Whiting D, Hambleton I, Beagley J, Linnenkamp U, Shaw J (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103(2):137–149CrossRefPubMedGoogle Scholar
  2. 2.
    Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321CrossRefPubMedGoogle Scholar
  3. 3.
    Ahlqvist E, Van Zuydam NR, Groop LC, McCarthy MI (2015) The genetics of diabetic complications. Nat Rev Nephrol 11(5):277–287CrossRefPubMedGoogle Scholar
  4. 4.
    Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874CrossRefPubMedGoogle Scholar
  5. 5.
    Frost RJ, Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci 108(52):21075–21080CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fernandez-Valverde SL, Taft RJ, Mattick JS (2011) MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications. Diabetes 60(7):1825–1831CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang C, Wan S, Yang T, Niu D, Zhang A, Yang C, et al. (2016) Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 6:20032CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhu H, Leung SW (2015) Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 58(5):900–911CrossRefPubMedGoogle Scholar
  9. 9.
    Sebastiani G, Nigi L, Grieco G, Mancarella F, Ventriglia G, Dotta F (2017) Circulating microRNAs and diabetes mellitus: a novel tool for disease prediction, diagnosis, and staging? J Endocrinol Investig 40(6):591–610CrossRefGoogle Scholar
  10. 10.
    Balasubramanyam M, Aravind S, Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H et al (2011) Impaired miR-146a expression links subclinical inflammation and insulin resistance in type 2 diabetes. Mol Cell Biochem 351(1–2):197–205CrossRefPubMedGoogle Scholar
  11. 11.
    Corral-Fernández N, Salgado-Bustamante M, Martínez-Leija M, Cortez-Espinosa N, Garcia-Hernandez M, Reynaga-Hernández E et al (2013) Dysregulated miR-155 expression in peripheral blood mononuclear cells from patients with type 2 diabetes. Exp Clin Endocrinol Diabetes 121(06):347–353CrossRefPubMedGoogle Scholar
  12. 12.
    Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y et al (2011) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48(1):61–69CrossRefPubMedGoogle Scholar
  13. 13.
    Baldeón L, Weigelt K, de Wit H, Ozcan B, van Oudenaren A, Sempértegui F et al (2014) Decreased serum level of miR-146a as sign of chronic inflammation in type 2 diabetic patients. PLoS One 9(12):e115209CrossRefGoogle Scholar
  14. 14.
    He X, Jing Z, Cheng G (2014) MicroRNAs: new regulators of Toll-like receptor signalling pathways. BioMed Res Int 2014:945169PubMedPubMedCentralGoogle Scholar
  15. 15.
    O’Connell RM, Rao DS, Baltimore D (2012) microRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312CrossRefPubMedGoogle Scholar
  16. 16.
    Ghaedi H, Bastami M, Zare-Abdollahi D, Alipoor B, Movafagh A, Mirfakhraie R et al (2015) Bioinformatics prioritization of SNPs perturbing microRNA regulation of hematological malignancy-implicated genes. Genomics 106(6):360–366CrossRefPubMedGoogle Scholar
  17. 17.
    Han M, Zheng Y (2013) Comprehensive analysis of single nucleotide polymorphisms in human microRNAs. PLoS One 8(11):e78028CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ghaedi H, Bastami M, Jahani MM, Alipoor B, Tabasinezhad M, Ghaderi O et al (2016) A bioinformatics approach to the identification of variants associated with type 1 and type 2 diabetes mellitus that reside in functionally validated microRNAs binding sites. Biochem Genet 54(3):211–221CrossRefPubMedGoogle Scholar
  19. 19.
    Ghaedi H, Tabasinezhad M, Alipoor B, Shokri F, Movafagh A, Mirfakhraie R et al (2016) The pre-mir-27a variant rs895819 may contribute to type 2 diabetes mellitus susceptibility in an Iranian cohort. J Endocrinol Investig 39(10):1187–1193CrossRefGoogle Scholar
  20. 20.
    Cammaerts S, Strazisar M, De Rijk P, Del Favero J (2015) Genetic variants in microRNA genes: impact on microRNA expression, function, and disease. Front Genet 6:186CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li C, Fu W, Zhang Y, Zhou L, Mao Z, Lv W et al (2015) Meta-analysis of microRNA-146a rs2910164 G>C polymorphism association with autoimmune diseases susceptibility, an update based on 24 studies. PLoS One 10(4):e0121918CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li Y, Zhang Y, Li X, Shi L, Tao W, Shi L et al (2015) Association study of polymorphisms in miRNAs with T2DM in Chinese population. Int J Med Sci 12(11):875CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shao Y, Li J, Cai Y, Xie Y, Ma G, Li Y et al. (2014) The functional polymorphisms of miR-146a are associated with susceptibility to severe sepsis in the Chinese population. Mediat Inflamm 2014:916202CrossRefGoogle Scholar
  24. 24.
    Zhang B, Wang A, Xia C, Lin Q, Chen C (2015) A single nucleotide polymorphism in primary-microRNA-146a reduces the expression of mature microRNA-146a in patients with Alzheimer’s disease and is associated with the pathogenesis of Alzheimer’s disease. Mol Med Rep 12(3):4037–4042CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Alipoor B, Meshkani R, Ghaedi H, Sharifi Z, Panahi G, Golmohammadi T (2016) Association of miR-146a rs2910164 and miR-149 rs2292832 variants with susceptibility to type 2 diabetes. Clin Lab 62(8):1553–1561PubMedGoogle Scholar
  26. 26.
    Meshkani R, Saberi H, MohammadTaghvaei N, Tabatabaiefar MA (2012) Estrogen receptor alpha gene polymorphisms are associated with type 2 diabetes and fasting glucose in male subjects. Mol Cell Biochem 359(1–2):225–233CrossRefPubMedGoogle Scholar
  27. 27.
    Chou C-H, Chang N-W, Shrestha S, Hsu S-D, Lin Y-L, Lee W-H et al (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44(D1):D239–D247CrossRefPubMedGoogle Scholar
  28. 28.
    Bhattacharya A, Ziebarth JD, Cui Y (2014) PolymiRTS database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res 42(D1):D86–D91CrossRefPubMedGoogle Scholar
  29. 29.
    Yang Z, Chen H, Si H, Li X, Ding X, Sheng Q et al (2014) Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol 51(5):823–831CrossRefPubMedGoogle Scholar
  30. 30.
    Ye E-A, Steinle JJ (2016) miR-146a attenuates inflammatory pathways mediated by TLR4/NF-κB and TNFα to protect primary human retinal microvascular endothelial cells grown in high glucose. Mediat Inflamm 2016:3958453Google Scholar
  31. 31.
    Feng B, Chen S, McArthur K, Wu Y, Sen S, Ding Q et al (2011) miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 60(11):2975–2984CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang L, Chopp M, Szalad A, Zhang Y, Wang X, Zhang R et al (2014) The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 259:155–163CrossRefPubMedGoogle Scholar
  33. 33.
    Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci 105(20):7269–7274CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Qi P, Wang L, Zhou B, Yao W, Xu S, Zhou Y et al (2015) Associations of miRNA polymorphisms and expression levels with breast cancer risk in the Chinese population. Genet Mol Res 14(2):6289–6296CrossRefPubMedGoogle Scholar
  35. 35.
    Wang R, Li M, Zhou S, Zeng D, Xu X, Xu R et al (2015) Effect of a single nucleotide polymorphism in miR-146a on COX-2 protein expression and lung function in smokers with chronic obstructive pulmonary disease. Int J Chronic Obstr Pulm Dis 10:463Google Scholar
  36. 36.
    Zhou Q, Hou S, Liang L, Li X, Tan X, Wei L et al (2012) MicroRNA-146a and Ets-1 gene polymorphisms in ocular Behçet’s disease and Vogt–Koyanagi–Harada syndrome. Ann Rheum Dis. doi: 10.1136/annrheumdis-2012-201627 Google Scholar
  37. 37.
    Xu T, Zhu Y, Wei Q-K, Yuan Y, Zhou F, Ge Y-Y et al (2008) A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis 29(11):2126–2131CrossRefPubMedGoogle Scholar
  38. 38.
    Chen Y, Chen J, Wang H, Shi J, Wu K, Liu S et al (2013) HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathog 9(4):e1003248CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    O’Hara SP, Splinter PL, Gajdos GB, Trussoni CE, Fernandez-Zapico ME, Chen X-M et al (2010) NFκB p50-CCAAT/enhancer-binding protein β (C/EBPβ)-mediated transcriptional repression of microRNA let-7i following microbial infection. J Biol Chem 285(1):216–225CrossRefPubMedGoogle Scholar
  40. 40.
    Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F, Locati M (2013) Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci 110(28):11499–11504CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Li T, Morgan MJ, Choksi S, Zhang Y, Kim Y-S, Liu Z-G (2010) MicroRNAs modulate the noncanonical transcription factor NF-[kappa] B pathway by regulating expression of the kinase IKK [alpha] during macrophage differentiation. Nat Immunol 11(9):799–805CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kalyani A, Sonawane PJ, Khan AA, Subramanian L, Ehret GB, Mullasari AS et al (2015) Post-transcriptional regulation of renalase gene by miR-29 and miR-146 MicroRNAs: implications for cardiometabolic disorders. J Mol Biol 427(16):2629–2646CrossRefPubMedGoogle Scholar
  43. 43.
    Lenin R, Sankaramoorthy A, Mohan V, Balasubramanyam M (2015) Altered immunometabolism at the interface of increased endoplasmic reticulum (ER) stress in patients with type 2 diabetes. J Leukoc Biol 98(4):615–622CrossRefPubMedGoogle Scholar
  44. 44.
    Ramakers C, Ruijter JM, Deprez RHL, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2017

Authors and Affiliations

  1. 1.Department of Laboratory Sciences, Faculty of ParamedicineYasuj University of Medical SciencesYasujIran
  2. 2.Department of Medical Genetics, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Department of Biochemistry, Faculty of MedicineTehran University of Medical SciencesTehranIran
  4. 4.Blood Transfusion Research Center, High Institute for Research and Education in Transfusion MedicineTehranIran

Personalised recommendations