Advertisement

Journal of Endocrinological Investigation

, Volume 41, Issue 3, pp 285–291 | Cite as

Gender differences in the association of ELMO1 genetic variants with type 2 diabetes in Tunisian Arabs

  • A. Turki
  • S. Mzoughi
  • N. Mtitaoui
  • M. Khairallah
  • H. Marmouch
  • S. Hammami
  • T. Mahjoub
  • W. Y. AlmawiEmail author
Original Article

Abstract

Purpose

Polymorphisms of the engulfment and cell motility 1 (ELMO1) gene were recently associated with type 2 diabetes (T2DM) and its complications. We investigated the association of rs10255208, rs7782979, and rs2041801 ELMO1 gene variants with T2DM in Tunisian Arabs.

Methods

Subjects comprised 900 T2DM patients and 600 normoglycemic controls. ELMO1 genotyping was done by PCR–RFLP; the contribution of ELMO1 variants to T2DM was analyzed by Haploview and regression analysis.

Results

Minor allele frequencies of rs7782979 and rs10255208 ELMO1 variants were significantly higher among unselected T2DM cases than controls, and significant differences in the distribution of rs7782979 genotypes were seen between T2DM cases and control subjects, which was seen in male but not female subjects. Three-locus ELMO1 haplotype analysis identified haplotype GAA to be positively associated, and haplotypes GCA, AAA, and GCG to be negatively associated with T2DM. The distribution of these haplotypes was gender-dependent for some (GCA, GCG, AAG), and gender-independent for others (GAA, AAA). This translated into altered risk of T2DM in male or female subjects, which persisted after adjusting for BMI, systolic and diastolic blood pressure, and serum lipid profile.

Conclusion

These results confirm role for ELMO1 as T2DM susceptibility locus, which appears to be gender-dependent.

Keywords

Allele ELMO1 Haplotype Tunisia Type 2 diabetes 

Abbreviations

DN

Diabetic nephropathy

ELMO1

Engulfment and cell motility 1

GWAS

Genome-wide association studies

LD

Linkage disequilibrium

MAF

Minor allele frequency

T2DM

Type 2 diabetes

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest with the article.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in this study.

References

  1. 1.
    Bell GI, Polonsky KS (2001) Diabetes mellitus and genetically programmed defects in β-cell function. Nature 414:788–791CrossRefPubMedGoogle Scholar
  2. 2.
    Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846CrossRefPubMedGoogle Scholar
  3. 3.
    Tao Z, Shi A, Zhao J (2015) Epidemiological perspectives of diabetes. Cell Biochem Biophys 73:181–185CrossRefPubMedGoogle Scholar
  4. 4.
    Saidi O, O’Flaherty M, Mansour NB, Aissi W, Lassoued O, Capewell S et al (2015) Forecasting Tunisian type 2 diabetes prevalence to 2027: validation of a simple model. BMC Public Health 15:104CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jenum AK, Holme I, Graff-Iversen S, Birkeland KI (2005) Ethnicity and sex are strong determinants of diabetes in an urban Western society: implications for prevention. Diabetologia 48:435–439CrossRefPubMedGoogle Scholar
  6. 6.
    Temelkova-Kurktschiev T, Stefanov T (2012) Lifestyle and genetics in obesity and type 2 diabetes. Exp Clin Endocrinol Diabetes 120:1–6CrossRefPubMedGoogle Scholar
  7. 7.
    Legato MJ, Gelzer A, Goland R, Ebner SA, Rajan S, Villagra V et al (2006) Gender-specific care of the patient with diabetes: review and recommendations. Gend Med 3:131–158CrossRefPubMedGoogle Scholar
  8. 8.
    Regitz-Zagrosek V, Lehmkuhl E, Weickert MO (2006) Gender differences in the metabolic syndrome and their role for cardiovascular disease. Clin Res Cardiol 95:136–147CrossRefPubMedGoogle Scholar
  9. 9.
    Franconi F, Seghieri G, Canu S, Straface E, Campesi I, Malorni W (2008) Are the available experimental models of type 2 diabetes appropriate for a gender perspective. Pharmacol Res 57:6–18CrossRefPubMedGoogle Scholar
  10. 10.
    Buday B, Pach PF, Literati-Nagy B, Vitai M, Kovacs G, Vecsei Z et al (2015) Sex influenced association of directly measured insulin sensitivity and serum transaminase levels: why alanine aminotransferase only predicts cardiovascular risk in men? Cardiovasc Diabetol. 14:55CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Johar H, Emeny RT, Bidlingmaier M, Kruse J, Ladwig KH (2016) Sex-related differences in the association of salivary cortisol levels and type 2 diabetes. Findings from the cross-sectional population based KORA-age study. Psychoneuroendocrinol 69:133–141CrossRefGoogle Scholar
  12. 12.
    Imamura M, Maeda S (2011) Genetics of type 2 diabetes: the GWAS era and future perspectives. Endocr J 58:723–739CrossRefPubMedGoogle Scholar
  13. 13.
    McCarthy MI, Zeggini E (2009) Genome-wide association studies in type 2 diabetes. Curr Diab Rep 9:164–171CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shimazaki A, Kawamura Y, Kanazawa A, Sekine A, Saito S, Tsunoda T et al (2005) Genetic variations in the gene encoding ELMO1 are associated with susceptibility to diabetic nephropathy. Diabetes 54:1171–1178CrossRefPubMedGoogle Scholar
  15. 15.
    Leak TS, Perlegas PS, Smith SG, Keene KL, Hicks PJ, Langefeld CD et al (2009) Variants in intron 13 of the ELMO1 gene are associated with diabetic nephropathy in African Americans. Ann Hum Genet 73:152–159CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hanson RL, Millis MP, Young NJ, Kobes S, Nelson RG, Knowler WC et al (2010) ELMO1 variants and susceptibility to diabetic nephropathy in American Indians. Mol Gen Metab 101:383–390CrossRefGoogle Scholar
  17. 17.
    Craig DW, Millis MP, DiStefano JK (2009) Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to Type 1 diabetes. Diabet Med 26:1090–1098CrossRefPubMedGoogle Scholar
  18. 18.
    Pezzolesi MG, Katavetin P, Kure M, Poznik GD, Skupien J, Mychaleckyj JC et al (2009) Confirmation of genetic associations at ELMO1 in the GoKinD collection supports its role as a susceptibility gene in diabetic nephropathy. Diabetes 58:2698–2702CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wu HY, Wang Y, Chen M, Zhang X, Wang D, Pan Y et al (2013) Association of ELMO1 gene polymorphisms with diabetic nephropathy in Chinese population. J Endocrinol Invest 36:298–302PubMedGoogle Scholar
  20. 20.
    Placha G, Poznik GD, Dunn J, Smiles A, Krolewski B, Glew T et al (2006) A genome-wide linkage scan for genes controlling variation in renal function estimated by serum cystatin C levels in extended families with type 2 diabetes. Diabetes 55:3358–3365CrossRefPubMedGoogle Scholar
  21. 21.
    De Bakker CD, Haney LB, Kinchen JM, Grimsley C, Lu M, Klingele D et al (2004) Phagocytosis of apoptotic cells is regulated by a UNC-73/TRIO-MIG-2/RhoG signaling module and armadillo repeats of CED-12/ELMO. Curr Biol 14:2208–2216CrossRefGoogle Scholar
  22. 22.
    Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K et al (2001) CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107:27–41CrossRefPubMedGoogle Scholar
  23. 23.
    Grimsley CM, Kinchen JM, Tosello-Trampont AC, Brugnera E, Haney LB, Lu M et al (2004) Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. J Biol Chem 279:6087–6097CrossRefPubMedGoogle Scholar
  24. 24.
    Yokoyama N, deBakker CD, Zappacosta F, Huddleston MJ, Annan RS, Ravichandran KS et al (2005) Identification of tyrosine residues on ELMO1 that are phosphorylated by the Src-family kinase Hck. Biochemistry 44:8841–8849CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sanui T, Inayoshi A, Noda M, Iwata E, Stein JV, Sasazuki T et al (2003) DOCK2 regulates Rac activation and cytoskeletal reorganization through interaction with ELMO1. Blood 102:2948–2950CrossRefPubMedGoogle Scholar
  26. 26.
    Janardhan A, Swigut T, Hill B, Myers MP, Skowronski J (2004) HIV-1 Nef binds the DOCK2-ELMO1 complex to activate rac and inhibit lymphocyte chemotaxis. PLoS Biol 2:E6CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chang YC, Chang EY, Chuang LM (2015) Recent progress in the genetics of diabetic microvascular complications. World J Diabetes 6:715–725CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shimazaki A, Tanaka Y, Shinosaki T, Ikeda M, Watada H, Hirose T et al (2006) ELMO1 increases expression of extracellular matrix proteins and inhibits cell adhesion to ECMs. Kidney Int 70:1769–1776CrossRefPubMedGoogle Scholar
  29. 29.
    Ryoo H, Woo J, Kim Y, Lee C (2011) Heterogeneity of genetic associations of CDKAL1 and HHEX with susceptibility of type 2 diabetes mellitus by gender. Eur J Hum Genet 19:672–675CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Linder K, Wagner R, Hatziagelaki E, Ketterer C, Heni M, Machicao F et al (2012) Allele summation of diabetes risk genes predicts impaired glucose tolerance in female and obese individuals. PLoS One 7:e38224CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Turki A, Al-Zaben GS, Khirallah M, Marmouch H, Mahjoub T, Almawi WY (2014) Gender-dependent associations of CDKN2A/2B, KCNJ11, POLI, SLC30A8, and TCF7L2 variants with type 2 diabetes in (North African) Tunisian Arabs. Diabetes Res Clin Pract 103:e40–e43CrossRefPubMedGoogle Scholar
  32. 32.
    Hammami S, Mehri S, Hajem S, Koubaa N, Souid H, Hammami M (2012) Prevalence of diabetes mellitus among non institutionalized elderly in Monastir City. BMC Endocr Disord 16:12–15Google Scholar
  33. 33.
    Qiao Q, Hu G, Tuomilehto J, Nakagami T, Balkau B, Borch- Johnsen K et al (2003) Age- and sex-specific prevalence of diabetes and impaired glucose regulation in 11 Asian cohorts. Diabetes Care 26:1770–1780CrossRefPubMedGoogle Scholar
  34. 34.
    Grossmann M, Thomas MC, Panagiotopoulos S, Sharpe K, Macisaac RJ, Clarke S et al (2008) Low testosterone levels are common and associated with insulin resistance in men with diabetes. J Clin Endocrinol Metab 93:1834–1840CrossRefPubMedGoogle Scholar
  35. 35.
    Talaei A, Amini M, Siavash M, Zare M (2010) The effect of dehydroepiandrosterone on insulin resistance in patients with impaired glucose tolerance. Hormones (Athens) 9:326–331CrossRefGoogle Scholar
  36. 36.
    Brugnera E, Haney L, Grimsley C, Lu M, Walk SF, Tosello-Trampont AC et al (2002) Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol 4:574–582CrossRefPubMedGoogle Scholar
  37. 37.
    Hathaway CK, Chang AS, Grant R, Kim HS, Madden VJ, Bagnell CR Jr et al (2016) High Elmo1 expression aggravates and low Elmo1 expression prevents diabetic nephropathy. Proc Natl Acad Sci USA 113:2218–2222CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2017

Authors and Affiliations

  • A. Turki
    • 1
  • S. Mzoughi
    • 1
  • N. Mtitaoui
    • 1
    • 2
  • M. Khairallah
    • 3
  • H. Marmouch
    • 4
  • S. Hammami
    • 4
  • T. Mahjoub
    • 1
  • W. Y. Almawi
    • 5
    Email author
  1. 1.Research Laboratory of Human Genome and Multifactorial Diseases, Faculty of Pharmacy of MonastirUniversity of MonastirMonastirTunisia
  2. 2.Higher Institute of Biotechnology of MonastirMonastirTunisia
  3. 3.Department of OphthalmologyFattouma Bourguiba University HospitalMonastirTunisia
  4. 4.Department of Endocrinology and Internal MedicineFattouma Bourguiba University HospitalMonastirTunisia
  5. 5.Faculty of SciencesEl Manar UniversityTunisTunisia

Personalised recommendations