Journal of Endocrinological Investigation

, Volume 40, Issue 2, pp 217–226 | Cite as

Effects of high-intensity interval training on physical capacities and substrate oxidation rate in obese adolescents

  • S. LazzerEmail author
  • G. Tringali
  • M. Caccavale
  • R. De Micheli
  • L. Abbruzzese
  • A. Sartorio
Original Article



To investigate the effects of a 3-week weight-management program entailing moderate energy restriction, nutritional education, psychological counseling and three different exercise training (a: low intensity, LI: 40 % V′O2max; b: high intensity, HI: 70 % V′O2max; c: high-intensity interval training, HIIT), on body composition, energy expenditure and fat oxidation rate in obese adolescents.


Thirty obese adolescents (age: 15–17 years, BMI: 37.5 kg m−2) participated in this study. Before starting (week 0, W0) and at the end of the weight-management program (week 3, W3), body composition was assessed by an impedancemeter; basal metabolic rate (BMR), energy expenditure and substrate oxidation rate were measured during exercise and post-exercise recovery by indirect calorimetry.


At W3, body mass (BM) and fat mass (FM) decreased significantly in all groups, the decreases being significantly greater in the LI than in the HI and HIIT subgroups (BM: −8.4 ± 1.5 vs −6.3 ± 1.9 vs −4.9 ± 1.3 kg and FM: −4.2 ± 1.9 vs −2.8 ± 1.2 vs −2.3 ± 1.4 kg, p < 0.05, respectively). V′O2peak, expressed in relative values, changed significantly only in the HI and HIIT groups by 0.009 ± 0.005 and 0.007 ± 0.004 L kg FFM−1 min−1 (p < 0.05). Furthermore, the HI and HIIT subgroups exhibited a greater absolute rate of fat oxidation between 50 and 70 % V′O2peak at W3. No significant changes were observed at W3 in BMR, energy expenditure during exercise and post-exercise recovery.


A 3-week weight-management program induced a greater decrease in BM and FM in the LI than in the HI and HIIT subgroups, and greater increase in V′O2peak and fat oxidation rate in the HI and HIIT than in the LI subgroup.


Obesity Exercise intensity Fat metabolism Energy metabolism Body composition 



We are grateful to the adolescents (and their parents) for participating in the present study, to the nursing staff of the Division of Auxology, Italian Institute for Auxology, IRCCS, for their qualified assistance during the clinical study. The study was supported by Progetti di Ricerca Corrente, Istituto Auxologico Italiano, Milan, Italy.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of the Italian Institute for Auxology (Milan).

Informed consent

Written informed consent was obtained before beginning the study.


  1. 1.
    Verrotti A, Penta L, Zenzeri L, Agostinelli S, De Feo P (2014) Childhood obesity: prevention and strategies of intervention. A systematic review of school-based interventions in primary schools. J Endocrinol Invest 37(12):1155–1164. doi: 10.1007/s40618-014-0153-y CrossRefPubMedGoogle Scholar
  2. 2.
    Swinburn B, Ravussin E (1993) Energy balance or fat balance? Am J Clin Nutr 57(5 Suppl):766S–770SPubMedGoogle Scholar
  3. 3.
    van Baak MA, van Mil E, Astrup AV, Finer N, Van Gaal LF, Hilsted J, Kopelman PG, Rossner S, James WP, Saris WH (2003) Leisure-time activity is an important determinant of long-term weight maintenance after weight loss in the Sibutramine Trial on Obesity Reduction and Maintenance (STORM trial). Am J Clin Nutr 78(2):209–214PubMedGoogle Scholar
  4. 4.
    Saris WH, Blair SN, van Baak MA, Eaton SB, Davies PS, Di Pietro L, Fogelholm M, Rissanen A, Schoeller D, Swinburn B, Tremblay A, Westerterp KR, Wyatt H (2003) How much physical activity is enough to prevent unhealthy weight gain? Outcome of the IASO 1st Stock Conference and consensus statement. Obes Rev 4(2):101–114CrossRefPubMedGoogle Scholar
  5. 5.
    Lafortuna CL, Lazzer S, Agosti F, Busti C, Galli R, Mazzilli G, Sartorio A (2009) Metabolic responses to submaximal treadmill walking and cycle ergometer pedalling in obese adolescents. Scand J Med Sci Sports 23:23Google Scholar
  6. 6.
    Brandou F, Savy-Pacaux AM, Marie J, Bauloz M, Maret-Fleuret I, Borrocoso S, Mercier J, Brun JF (2005) Impact of high- and low-intensity targeted exercise training on the type of substrate utilization in obese boys submitted to a hypocaloric diet. Diabetes Metab 31(4 Pt 1):327–335CrossRefPubMedGoogle Scholar
  7. 7.
    Lazzer S, Lafortuna C, Busti C, Galli R, Tinozzi T, Agosti F, Sartorio A (2010) Fat oxidation rate during and after a low- or high-intensity exercise in severely obese Caucasian adolescents. Eur J Appl Physiol 108(2):383–391. doi: 10.1007/s00421-009-1234-z CrossRefPubMedGoogle Scholar
  8. 8.
    van Aggel-Leijssen DP, Saris WH, Wagenmakers AJ, Senden JM, van Baak MA (2002) Effect of exercise training at different intensities on fat metabolism of obese men. J Appl Physiol 92(3):1300–1309CrossRefPubMedGoogle Scholar
  9. 9.
    Garcia-Hermoso A, Cerrillo-Urbina AJ, Herrera-Valenzuela T, Cristi-Montero C, Saavedra JM, Martinez-Vizcaino V (2016) Is high-intensity interval training more effective on improving cardiometabolic risk and aerobic capacity than other forms of exercise in overweight and obese youth? A meta-analysis. Obes Rev 17(6):531–540. doi: 10.1111/obr.12395 CrossRefPubMedGoogle Scholar
  10. 10.
    Lambrick D, Westrupp N, Kaufmann S, Stoner L, Faulkner J (2016) The effectiveness of a high-intensity games intervention on improving indices of health in young children. J Sports Sci 34(3):190–198. doi: 10.1080/02640414.2015.1048521 CrossRefPubMedGoogle Scholar
  11. 11.
    Armstrong N, Tomkinson G, Ekelund U (2011) Aerobic fitness and its relationship to sport, exercise training and habitual physical activity during youth. Br J Sports Med 45(11):849–858. doi: 10.1136/bjsports-2011-090200 CrossRefPubMedGoogle Scholar
  12. 12.
    Corte de Araujo AC, Roschel H, Picanco AR, do Prado DM, Villares SM, de Sa Pinto AL, Gualano B (2012) Similar health benefits of endurance and high-intensity interval training in obese children. PLoS ONE 7(8):e42747. doi: 10.1371/journal.pone.0042747 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS (2015) The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med 45(5):679–692. doi: 10.1007/s40279-015-0321-z CrossRefPubMedGoogle Scholar
  14. 14.
    Lunt H, Draper N, Marshall HC, Logan FJ, Hamlin MJ, Shearman JP, Cotter JD, Kimber NE, Blackwell G, Frampton CM (2014) High intensity interval training in a real world setting: a randomized controlled feasibility study in overweight inactive adults, measuring change in maximal oxygen uptake. PLoS ONE 9(1):e83256. doi: 10.1371/journal.pone.0083256 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Costigan SA, Eather N, Plotnikoff RC, Taaffe DR, Lubans DR (2015) High-intensity interval training for improving health-related fitness in adolescents: a systematic review and meta-analysis. Br J Sports Med 49(19):1253–1261. doi: 10.1136/bjsports-2014-094490 CrossRefPubMedGoogle Scholar
  16. 16.
    Alkahtani SA, King NA, Hills AP, Byrne NM (2013) Effect of interval training intensity on fat oxidation, blood lactate and the rate of perceived exertion in obese men. Springerplus 2:532. doi: 10.1186/2193-1801-2-532597 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med 43(5):313–338. doi: 10.1007/s40279-013-0029-x CrossRefPubMedGoogle Scholar
  18. 18.
    Cacciari E, Milani S, Balsamo A, Spada E, Bona G, Cavallo L, Cerutti F, Gargantini L, Greggio N, Tonini G, Cicognani A (2006) Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J Endocrinol Invest 29(7):581–593CrossRefPubMedGoogle Scholar
  19. 19.
    Tanner JM (1962) Growth at adolescence, 2nd edn. UK, OxfordGoogle Scholar
  20. 20.
    Nutrition ISo (1996) Recommended levels of energy and nutrients intake for the Italian population (LARN). Edra Medical Publishing and New Media, MilanoGoogle Scholar
  21. 21.
    Lukaski HC (1987) Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr 46(4):537–556PubMedGoogle Scholar
  22. 22.
    Lazzer S, Bedogni G, Agosti F, De Col A, Mornati D, Sartorio A (2008) Comparison of dual-energy X-ray absorptiometry, air displacement plethysmography and bioelectrical impedance analysis for the assessment of body composition in severely obese Caucasian children and adolescents. Br J Nutr 100(4):918–24. doi: 10.1017/S0007114508922558 CrossRefPubMedGoogle Scholar
  23. 23.
    Weir JB (1949) New methods for calculating metabolic rate with special references to protein metabolism. J Physiol (Lond) 109:1–9CrossRefGoogle Scholar
  24. 24.
    Achten J, Gleeson M, Jeukendrup AE (2002) Determination of the exercise intensity that elicits maximal fat oxidation. Med Sci Sports Exerc 34(1):92–97CrossRefPubMedGoogle Scholar
  25. 25.
    Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 55(2):628–634PubMedGoogle Scholar
  26. 26.
    Gutin B, Barbeau P, Owens S, Lemmon CR, Bauman M, Allison J, Kang HS, Litaker MS (2002) Effects of exercise intensity on cardiovascular fitness, total body composition, and visceral adiposity of obese adolescents. Am J Clin Nutr 75(5):818–826PubMedGoogle Scholar
  27. 27.
    Sothern MS, Loftin M, Suskind RM, Udall JN Jr, Blecker U (1999) The impact of significant weight loss on resting energy expenditure in obese youth. J Investig Med 47(5):222–226PubMedGoogle Scholar
  28. 28.
    Flatt JP (1993) Dietary fat, carbohydrate balance, and weight maintenance. Ann N Y Acad Sci 683:122–140CrossRefPubMedGoogle Scholar
  29. 29.
    Maffeis C, Zaffanello M, Pellegrino M, Banzato C, Bogoni G, Viviani E, Ferrari M, Tato L (2005) Nutrient oxidation during moderately intense exercise in obese prepubertal boys. J Clin Endocrinol Metab 90(1):231–236 Epub 2004 Oct 2013 CrossRefPubMedGoogle Scholar
  30. 30.
    Saavedra JM, García-Hermoso A, Escalante Y, Domínguez AM (2014) Self-determined motivation, physical exercise and diet in obese children: a three-year follow-up study. Int J Clin Health Psychol 14:195–201CrossRefGoogle Scholar
  31. 31.
    Bond B, Hind S, Williams CA, Barker AR (2015) The acute effect of exercise intensity on vascular function in adolescents. Med Sci Sports Exerc 47(12):2628–2635. doi: 10.1249/MSS.0000000000000715 CrossRefPubMedGoogle Scholar
  32. 32.
    Astorino TA, Allen RP, Roberson DW, Jurancich M (2012) Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. J Strength Cond Res 26(1):138–145. doi: 10.1519/JSC.0b013e318218dd7700124278-201201000-00018 CrossRefPubMedGoogle Scholar
  33. 33.
    Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586(1):151–160. doi: 10.1113/jphysiol.2007.142109 CrossRefPubMedGoogle Scholar
  34. 34.
    Gavarry O, Aguer C, Delextrat A, Lentin G, Ayme K, Boussuges A (2015) Severely obese adolescent girls rely earlier on carbohydrates during walking than normal-weight matched girls. J Sports Sci 33(18):1871–1880. doi: 10.1080/02640414.2015.1021274 CrossRefPubMedGoogle Scholar
  35. 35.
    Perez-Martin A, Dumortier M, Raynaud E, Brun JF, Fedou C, Bringer J, Mercier J (2001) Balance of substrate oxidation during submaximal exercise in lean and obese people. Diabetes Metab 27(4 Pt 1):466–474PubMedGoogle Scholar
  36. 36.
    Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsoe R, Dela F (2007) Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50(4):790–796. doi: 10.1007/s00125-007-0594-3 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB, Lopaschuk GD, Muoio DM (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7(1):45–56. doi: 10.1016/j.cmet.2007.10.013 CrossRefPubMedGoogle Scholar
  38. 38.
    Aucouturier J, Duche P, Timmons BW (2011) Metabolic flexibility and obesity in children and youth. Obes Rev 12(5):e44–e53. doi: 10.1111/j.1467-789X.2010.00812.x CrossRefPubMedGoogle Scholar
  39. 39.
    McMurray RG, Hackney AC (2005) Interactions of metabolic hormones, adipose tissue and exercise. Sports Med 35(5):393–412. doi: 10.2165/00007256-200535050-00003 CrossRefPubMedGoogle Scholar
  40. 40.
    Eliakim A, Nemet D, Zaldivar F, McMurray RG, Culler FL, Galassetti P, Cooper DM (2006) Reduced exercise-associated response of the GH-IGF-I axis and catecholamines in obese children and adolescents. J Appl Physiol 100(5):1630–1637. doi: 10.1152/japplphysiol.01072.2005 CrossRefPubMedGoogle Scholar
  41. 41.
    Lazzer S, Bedogni G, Lafortuna CL, Marazzi N, Busti C, Galli R, De Col A, Agosti F, Sartorio A (2009) Relationship between basal metabolic rate, gender, age, and body composition in 8,780 white obese subjects. Obesity 28:28Google Scholar
  42. 42.
    Lazzer S, Boirie Y, Bitar A, Montaurier C, Vernet J, Meyer M, Vermorel M (2003) Assessment of energy expenditure associated with physical activities in free-living obese and nonobese adolescents. Am J Clin Nutr 78(3):471–479PubMedGoogle Scholar
  43. 43.
    Stiegler P, Cunliffe A (2006) The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med 36(3):239–262CrossRefPubMedGoogle Scholar
  44. 44.
    Smith J, Mc Naughton L (1993) The effects of intensity of exercise on excess postexercise oxygen consumption and energy expenditure in moderately trained men and women. Eur J Appl Physiol Occup Physiol 67(5):420–425CrossRefPubMedGoogle Scholar
  45. 45.
    Phelain JF, Reinke E, Harris MA, Melby CL (1997) Postexercise energy expenditure and substrate oxidation in young women resulting from exercise bouts of different intensity. J Am Coll Nutr 16(2):140–146CrossRefPubMedGoogle Scholar
  46. 46.
    Saris WH, Schrauwen P (2004) Substrate oxidation differences between high- and low-intensity exercise are compensated over 24 hours in obese men. Int J Obes Relat Metab Disord 28(6):759–765CrossRefPubMedGoogle Scholar
  47. 47.
    Melanson EL, Sharp TA, Seagle HM, Horton TJ, Donahoo WT, Grunwald GK, Hamilton JT, Hill JO (2002) Effect of exercise intensity on 24-h energy expenditure and nutrient oxidation. J Appl Physiol 92(3):1045–1052CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2016

Authors and Affiliations

  • S. Lazzer
    • 1
    • 2
    • 3
    Email author
  • G. Tringali
    • 3
  • M. Caccavale
    • 3
  • R. De Micheli
    • 3
  • L. Abbruzzese
    • 3
  • A. Sartorio
    • 3
    • 4
  1. 1.Department of Medical and Biological SciencesUniversity of UdineUdineItaly
  2. 2.School of Sport ScienceUniversity of UdineUdineItaly
  3. 3.Laboratorio Sperimentale di Ricerche Auxo-EndocrinologicheIstituto Auxologico Italiano, IRCCSMilanItaly
  4. 4.Divisione di Auxologia and Malattie MetabolicheIstituto Auxologico Italiano, IRCCSMilanItaly

Personalised recommendations