Advertisement

Journal of Endocrinological Investigation

, Volume 39, Issue 9, pp 1045–1053 | Cite as

Prevalence of overweight/obesity, abdominal obesity and metabolic syndrome and atypical cardiometabolic phenotypes in the adult Romanian population: PREDATORR study

  • S. Popa
  • M. MoţaEmail author
  • A. Popa
  • E. Moţa
  • C. Serafinceanu
  • C. Guja
  • D. Catrinoiu
  • N. Hâncu
  • R. Lichiardopol
  • C. Bala
  • A. Popa
  • G. Roman
  • G. Radulian
  • R. Timar
  • B. Mihai
Original Article

Abstract

Purpose

The objectives were to assess the prevalence of overweight/obesity, abdominal obesity and metabolic syndrome (MetS), and to evaluate the characteristics of the metabolically unhealthy lean (MUHL) and metabolically healthy overweight/obese (MHO) phenotypes in a Romanian population-based sample from the PREDATORR study.

Methods

PREDATORR was an epidemiological study with a stratified, cross-sectional, cluster random sampling design. Participants were classified into four cardiometabolic phenotypes based on the BMI, the cut-off value being 25 kg/m2, and the presence of MetS (defined according to the Harmonization definition 2009): MUHL, MHO, metabolically healthy lean (MHL) and metabolically unhealthy overweight/obese (MUHO).

Results

Overall, 2681 subjects aged 20–79 years were included in the analysis. The overall age and sex-adjusted prevalence of obesity was 31.90 %, overweight was 34.7 %, abdominal obesity was 73.90 % and MetS was 38.50 %. The age- and sex-adjusted prevalence of MHO phenotype was 31.60 %, while MUHL phenotype prevalence was 3.90 %. MUHL and MHO participants had a cardiometabolic profile, kidney function and CVD risk intermediary between MHL and MUHO. MUHL had higher odds of being associated with CVD risk (OR 5.8; p < 0.001), abdominal obesity, prediabetes, diabetes, hypertriglyceridemia and hypo-HDL cholesterolemia than MHL, while MHO phenotype was associated with hypo-HDL cholesterolemia (OR 3.1; p = 0.002), prediabetes (OR 2.9; p < 0.001) and abdominal obesity.

Conclusions

PREDATORR study showed a high prevalence of obesity/overweight, abdominal obesity and MetS in the adult Romanian population, and their association with kidney function and several cardiometabolic factors.

Keywords

PREDATORR study Obesity/overweight Metabolic syndrome Metabolically unhealthy lean phenotype Metabolically healthy overweight/obesity phenotype Romania 

Notes

Acknowledgments

The authors would like to thank the 101 general practitioners (enrolled the participants and filled in the study questionnaires), CEBIS International (study feasibility, project management and statistical analysis), Prof. Dr. Cristian Băicuș (validation of the statistical analyses), Adriana Rusu and Iudit-Hajnal Filip (XPE Pharma&Science) for writing support.

Compliance with ethical standards

Funding source

This work was supported by the Romanian Society of Diabetes, Nutrition and Metabolic Diseases, IHS Sofmedica, Abbott, Astra Zeneca, Novo Nordisk, MSD, Servier, Novartis, Worwag Pharma.

Conflict of interest

The authors declare that they have no conflict of interest. The sponsors had no role in the design of the study, in the execution, interpretation of the data or the decision to submit the results.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the Romanian National Ethics Committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    World Health Organization (2014) Global status report on noncommunicable diseases Attaining the nine global noncommunicable diseases targets; a shared responsibility. http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_eng.pdf. Accessed 05 Jan 2016
  2. 2.
    World Health Organization (2002) The world health report 2002: Reducing risks, promoting healthy life. Geneva http://www.who.int/whr/2002/en/whr02_en.pdf?ua=1. Accessed 05 Jan 2016
  3. 3.
    World Cancer Research Fund/American Institute for Cancer Research (2009) Policy and action for cancer prevention. Food, nutrition, and physical activity: a global perspective. AICR.Washington DC http://www.dietandcancerreport.org/cancer_resource_center/downloads/chapters/pr/Introductory%20pages.pdf. Accessed 05 Jan 2016
  4. 4.
    World Health Organization.(2010) Global Status Report on noncommunicable diseases Chapter 1. Burden: mortality, morbidity and risk factors. http://www.who.int/nmh/publications/ncd_report_chapter1.pdf. Accessed 20 Dec 2015
  5. 5.
    OECD (2014) Health at a Glance: Europe 2014 completed with Eurostat Statistics Database. OECD Publishing. doi: 10.1787/health_glance_eur-2014-en. Accessed 20 Dec 2015
  6. 6.
    Cinteza M, Pana B, Cochino E et al (2007) Prevalence and control of cardiovascular risk factors in Romania cardio-zone national study. Mædica J Clin Med 2(4):277–282Google Scholar
  7. 7.
    Dorobantu M, Badila E, Ghiorghe S et al (2008) Total cardiovascular risk estimation in Romania. Data from the SEPHAR study. Rom J Intern Med 46(1):29–37PubMedGoogle Scholar
  8. 8.
    Motamed N, Razmjou S, Hemmasi G, et al (2015) Lipid accumulation product and metabolic syndrome: a population-based study in northern Iran, Amol. J Endocrinol Invest [Epub ahead of print] Google Scholar
  9. 9.
    Macut D, Antić IB, Bjekić-Macut J (2015) Cardiovascular risk factors and events in women with androgen excess. J Endocrinol Invest 38(3):295–301. doi: 10.1007/s40618-014-0215-1 CrossRefPubMedGoogle Scholar
  10. 10.
    de Luis DA, Aller R, Izaola O et al (2014) Cardiovascular risk factors and adipocytokines levels after two hypocaloric diets with different fat distribution in obese subjects and rs6923761 gene variant of glucagon-like peptide 1 receptor. J Endocrinol Invest 37(9):853–859. doi: 10.1007/s40618-014-0116-3 CrossRefPubMedGoogle Scholar
  11. 11.
    Primeau V, Coderre L, Karelis AD et al (2011) Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond) 35(7):971–981. doi: 10.1038/ijo.2010.216 CrossRefGoogle Scholar
  12. 12.
    Van Vliet-Ostaptchouk JV, Nuotio ML, Slagter SN et al (2014) The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Disord 14:9–21. doi: 10.1186/1472-6823-14-9 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wildman RP, Muntner P, Reynolds K et al (2008) The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med 168(15):1617–1624. doi: 10.1001/archinte.168.15.1617 CrossRefPubMedGoogle Scholar
  14. 14.
    Pajunen P, Kotronen A, Korpi-Hyövälti E et al (2011) Metabolically healthy and unhealthy obesity phenotypes in the general population: the FIN-D2D Survey. BMC Public Health 11:754. doi: 10.1186/1471-2458-11-754 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hinnouho GM, Czernichow S, Dugravot A et al (2015) Metabolically healthy obesity and the risk of cardiovascular disease and type 2 diabetes: the Whitehall II cohort study. Eur Heart J 36(9):551–559. doi: 10.1093/eurheartj/ehu123 CrossRefPubMedGoogle Scholar
  16. 16.
    Meigs JB, Wilson PW, Fox CS et al (2006) Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab 91(8):2906–2912CrossRefPubMedGoogle Scholar
  17. 17.
    Ärnlöv J, Sundström J, Ingelsson E et al (2011) Impact of BMI and the metabolic syndrome on the risk of diabetes in middle-aged men. Diabetes Care 34(1):61–65. doi: 10.2337/dc10-0955 CrossRefPubMedGoogle Scholar
  18. 18.
    Hamer M, Stamatakis E (2012) Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J Clin Endocrinol Metab 97(7):2482–2488. doi: 10.1210/jc.2011-3475 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kuk JL, Ardern CI (2009) Are metabolically normal but obese individuals at lower risk for all-cause mortality? Diabetes Care 32(12):2297–2299. doi: 10.2337/dc09-0574 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mota M, Popa SG, Mota E et al (2015) Prevalence of Diabetes Mellitus and Prediabetes in the Adult Romanian Population: PREDATORR Study. J Diabetes. doi: 10.1111/1753-0407.12297 Google Scholar
  21. 21.
    Alberti KG, Eckel RH, Grundy SM et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644 CrossRefPubMedGoogle Scholar
  22. 22.
    Matthews D, Hosker J, Rudenski A et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419CrossRefPubMedGoogle Scholar
  23. 23.
    American Diabetes Association (2012) Standards of medical care in diabetes -2012. Diabetes Care 35(1):S11–S63. doi: 10.2337/dc12-s011 Google Scholar
  24. 24.
    Cleeman J, Grundy S, Becker D et al (2001) Expert panel on detection, evaluation and treatment of high blood cholesterol in adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Adult Treatment Panel (ATP III). JAMA 285:2486–2497CrossRefGoogle Scholar
  25. 25.
    Kdigo, CKD Work Group (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3(1):1–150CrossRefGoogle Scholar
  26. 26.
    D’Agostino RB Sr, Vasan RS et al (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6):743–753. doi: 10.1161/CIRCULATIONAHA.107.699579 CrossRefPubMedGoogle Scholar
  27. 27.
    Ogden CL, Carroll MD, Kit BK, et al (2013) Prevalence of Obesity among Adults: United States, 2011-2012. NCHS data brief. http://www.cdc.gov/nchs/data/databriefs/db131.pdf. Accessed 20 Dec 2015
  28. 28.
    Balkau B, Deanfield JE, Després JP et al (2007) International Day for the Evaluation of Abdominal Obesity (IDEA): a study of waist circumference, cardiovascular disease, and diabetes mellitus in 168,000 primary care patients in 63 countries. Circulation 116(17):1942–1951CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Grundy SM (2008) Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28(4):629–636. doi: 10.1161/ATVBAHA.107.151092 CrossRefPubMedGoogle Scholar
  30. 30.
    Ford ES, Li C, Zhao G (2010) Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J Diabetes 2(3):180–193. doi: 10.1111/j.1753-0407.2010.00078.x CrossRefPubMedGoogle Scholar
  31. 31.
    Roberson LL, Aneni EC, Maziak W et al (2014) Beyond BMI: The “Metabolically healthy obese” phenotype & its association with clinical/subclinical cardiovascular disease and all-cause mortality – a systematic review. BMC Public Health 14:14. doi: 10.1186/1471-2458-14-14 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kaur J (2014) A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014:943162. doi: 10.1155/2014/943162 PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kramer H, Shoham D, McClure LA et al (2011) Association of waist circumference and body mass index with all-cause mortality in CKD: The REGARDS (Reasons for Geographic and Racial Differences in Stroke) Study. Am J Kidney Dis 58(2):177–185. doi: 10.1053/j.ajkd.2011.02.390 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chen S, Zhou S, Wu B et al (2014) Association between metabolically unhealthy overweight/obesity and chronic kidney disease: the role of inflammation. Diabetes Metab 40(6):423–430CrossRefPubMedGoogle Scholar
  35. 35.
    Seo MH, Rhee EJ (2014) Metabolic and cardiovascular implications of a metabolically healthy obesity phenotype. Endocrinol Metab (Seoul) 29(4):427–434. doi: 10.3803/EnM.2014.29.4.427 CrossRefGoogle Scholar
  36. 36.
    Park J, Kim SH, Cho GY et al (2011) Obesity phenotype and cardiovascular changes. J Hypertens 29(9):1765–1772. doi: 10.1097/HJH.0b013e32834a50f3 CrossRefPubMedGoogle Scholar
  37. 37.
    Eshtiaghi R, Keihani S, Hosseinpanah F et al (2015) Natural course of metabolically healthy abdominal obese adults after 10 years of follow-up: the Tehran Lipid and Glucose Study. Int J Obes (Lond) 39(3):514–519. doi: 10.1038/ijo.2014.176 CrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2016

Authors and Affiliations

  • S. Popa
    • 1
  • M. Moţa
    • 1
    Email author
  • A. Popa
    • 2
  • E. Moţa
    • 1
  • C. Serafinceanu
    • 3
  • C. Guja
    • 3
  • D. Catrinoiu
    • 4
  • N. Hâncu
    • 5
  • R. Lichiardopol
    • 3
  • C. Bala
    • 5
  • A. Popa
    • 6
  • G. Roman
    • 5
  • G. Radulian
    • 3
  • R. Timar
    • 7
  • B. Mihai
    • 8
  1. 1.Department of Diabetes, Nutrition and Metabolic DiseasesUniversity of Medicine and Pharmacy CraiovaCraiovaRomania
  2. 2.Emergency Clinical Hospital CraiovaCraiovaRomania
  3. 3.University of Medicine and Pharmacy “Carol Davila”BucharestRomania
  4. 4.University “Ovidius”ConstanţaConstanţaRomania
  5. 5.University of Medicine and Pharmacy “Iuliu Haţieganu”Cluj-NapocaRomania
  6. 6.University OradeaOradeaRomania
  7. 7.University of Medicine and Pharmacy “Victor Babeș”TimișoaraRomania
  8. 8.University of Medicine and Pharmacy “Grigore T. Popa”IașiRomania

Personalised recommendations