Skip to main content

Advertisement

Log in

TSHR intronic polymorphisms (rs179247 and rs12885526) and their role in the susceptibility of the Brazilian population to Graves’ disease and Graves’ ophthalmopathy

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Intronic thyroid-stimulating hormone receptor polymorphisms have been associated with the risk for both Graves’ disease and Graves’ ophthalmopathy, but results have been inconsistent among different populations. We aimed to investigate the influence of thyroid-stimulating hormone receptor intronic polymorphisms in a large well-characterized population of GD patients.

Methods

We studied 279 Graves’ disease patients (231 females and 48 males, 39.80 ± 11.69 years old), including 144 with Graves’ ophthalmopathy, matched to 296 healthy control individuals. Thyroid-stimulating hormone receptor genotypes of rs179247 and rs12885526 were determined by Real Time PCR TaqMan® SNP Genotyping.

Results

A multivariate analysis showed that the inheritance of the thyroid-stimulating hormone receptor AA genotype for rs179247 increased the risk for Graves’ disease (OR = 2.821; 95 % CI 1.595–4.990; p = 0.0004), whereas the thyroid-stimulating hormone receptor GG genotype for rs12885526 increased the risk for Graves’ ophthalmopathy (OR = 2.940; 95 % CI 1.320–6.548; p = 0.0083). Individuals with Graves’ ophthalmopathy also presented lower mean thyrotropin receptor antibodies levels (96.3 ± 143.9 U/L) than individuals without Graves’ ophthalmopathy (98.3 ± 201.9 U/L). We did not find any association between the investigated polymorphisms and patients clinical features or outcome.

Conclusion

We demonstrate that thyroid-stimulating hormone receptor intronic polymorphisms are associated with the susceptibility to Graves’ disease and Graves’ ophthalmopathy in the Brazilian population, but do not appear to influence the disease course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weetman AP (2000) Graves’ disease. N Engl J Med 343(17):1236–1248. doi:10.1056/NEJM200010263431707

    Article  CAS  PubMed  Google Scholar 

  2. Bartalena L, Fatourechi V (2014) Extrathyroidal manifestations of Graves’ disease: a 2014 update. J Endocrinol Invest 37(8):691–700. doi:10.1007/s40618-014-0097-2

    Article  PubMed  Google Scholar 

  3. Piantanida E, Tanda ML, Lai A, Sassi L, Bartalena L (2013) Prevalence and natural history of Graves’ orbitopathy in the XXI century. J Endocrinol Invest 36(6):444–449. doi:10.3275/8937

    CAS  PubMed  Google Scholar 

  4. Yin X, Latif R, Bahn R, Davies TF (2012) Genetic profiling in Graves’ disease: further evidence for lack of a distinct genetic contribution to Graves’ ophthalmopathy. Thyroid 22(7):730–736. doi:10.1089/thy.2012.0007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ban Y, Tomer Y (2003) The contribution of immune regulatory and thyroid specific genes to the etiology of Graves’ and Hashimoto’s diseases. Autoimmunity 36(6–7):367–379

    Article  CAS  PubMed  Google Scholar 

  6. Kavvoura FK, Akamizu T, Awata T, Ban Y, Chistiakov DA, Frydecka I, Ghaderi A, Gough SC, Hiromatsu Y, Ploski R, Wang PW, Bednarczuk T, Chistiakova EI, Chojm M, Heward JM, Hiratani H, Juo SH, Karabon L, Katayama S, Kurihara S, Liu RT, Miyake I, Omrani GH, Pawlak E, Taniyama M, Tozaki T, Ioannidis JP (2007) Cytotoxic T-lymphocyte associated antigen 4 gene polymorphisms and autoimmune thyroid disease: a meta-analysis. J Clin Endocrinol Metab 92(8):3162–3170. doi:10.1210/jc.2007-0147

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, Zahir N, Jiang Q, Miliotis H, Heyraud S, Meng X, Dong B, Xie G, Qiu F, Hao Z, McCulloch CA, Keystone EC, Peterson AC, Siminovitch KA (2011) The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat Genet 43(9):902–907. doi:10.1038/ng.904

    Article  CAS  PubMed  Google Scholar 

  8. Tomer Y, Concepcion E, Greenberg DA (2002) A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid 12(12):1129–1135. doi:10.1089/105072502321085234

    Article  CAS  PubMed  Google Scholar 

  9. Chistiakov DA, Chistiakova EI, Voronova NV, Turakulov RI, Savost’anov KV (2011) A variant of the Il2ra/Cd25 gene predisposing to graves’ disease is associated with increased levels of soluble interleukin-2 receptor. Scand J Immunol 74(5):496–501. doi:10.1111/j.1365-3083.2011.02608.x

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Xiao WX, Zhu YF, Muhali FS, Xiao L, Jiang WJ, Shi XH, Zhou LH, Zhang JA (2013) Polymorphisms of interleukin-21 and interleukin-21-receptor genes confer risk for autoimmune thyroid diseases. BMC Endocr Disord 13:26. doi:10.1186/1472-6823-13-26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Tomer Y, Greenberg DA, Concepcion E, Ban Y, Davies TF (2002) Thyroglobulin is a thyroid specific gene for the familial autoimmune thyroid diseases. J Clin Endocrinol Metab 87(1):404–407

    Article  CAS  PubMed  Google Scholar 

  12. Davies TF, Yin X, Latif R (2010) The genetics of the thyroid stimulating hormone receptor: history and relevance. Thyroid 20(7):727–736. doi:10.1089/thy.2010.1638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Allahabadia A, Heward JM, Nithiyananthan R, Gibson SM, Reuser TT, Dodson PM, Franklyn JA, Gough SC (2001) MHC class II region, CTLA4 gene, and ophthalmopathy in patients with Graves’ disease. Lancet 358(9286):984–985 [pii]:S0140673601061256

    Article  CAS  PubMed  Google Scholar 

  14. Davies TF, Ando T, Lin RY, Tomer Y, Latif R (2005) Thyrotropin receptor-associated diseases: from adenomata to Graves disease. J Clin Invest 115(8):1972–1983. doi:10.1172/JCI26031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bahn RS (2010) Graves’ ophthalmopathy. N Engl J Med 362(8):726–738. doi:10.1056/NEJMra0905750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ploski R, Brand OJ, Jurecka-Lubieniecka B, Franaszczyk M, Kula D, Krajewski P, Karamat MA, Simmonds MJ, Franklyn JA, Gough SC, Jarzab B, Bednarczuk T (2010) Thyroid stimulating hormone receptor (TSHR) intron 1 variants are major risk factors for Graves’ disease in three European Caucasian cohorts. PLoS One 5(11):e15512. doi:10.1371/journal.pone.0015512

    Article  PubMed Central  PubMed  Google Scholar 

  17. Allahabadia A, Heward JM, Mijovic C, Carr-Smith J, Daykin J, Cockram C, Barnett AH, Sheppard MC, Franklyn JA, Gough SC (1998) Lack of association between polymorphism of the thyrotropin receptor gene and Graves’ disease in United Kingdom and Hong Kong Chinese patients: case control and family-based studies. Thyroid 8(9):777–780

    Article  CAS  PubMed  Google Scholar 

  18. Ban Y, Greenberg DA, Concepcion ES, Tomer Y (2002) A germline single nucleotide polymorphism at the intracellular domain of the human thyrotropin receptor does not have a major effect on the development of Graves’ disease. Thyroid 12(12):1079–1083. doi:10.1089/105072502321085171

    Article  CAS  PubMed  Google Scholar 

  19. Chistiakov DA, Savost’anov KV, Turakulov RI, Petunina N, Balabolkin MI, Nosikov VV (2002) Further studies of genetic susceptibility to Graves’ disease in a Russian population. Med Sci Monit 8(3):CR180–CR184 [pii]:2484

    PubMed  Google Scholar 

  20. Chistyakov DA, Savost’anov KV, Turakulov RI, Petunina NA, Trukhina LV, Kudinova AV, Balabolkin MI, Nosikov VV (2000) Complex association analysis of graves disease using a set of polymorphic markers. Mol Genet Metab 70(3):214–218. doi:10.1006/mgme.2000.3007

    Article  CAS  PubMed  Google Scholar 

  21. Gabriel EM, Bergert ER, Grant CS, van Heerden JA, Thompson GB, Morris JC (1999) Germline polymorphism of codon 727 of human thyroid-stimulating hormone receptor is associated with toxic multinodular goiter. J Clin Endocrinol Metab 84(9):3328–3335. doi:10.1210/jcem.84.9.5966

    CAS  PubMed  Google Scholar 

  22. Ho SC, Goh SS, Khoo DH (2003) Association of Graves’ disease with intragenic polymorphism of the thyrotropin receptor gene in a cohort of Singapore patients of multi-ethnic origins. Thyroid 13(6):523–528. doi:10.1089/105072503322238773

    Article  CAS  PubMed  Google Scholar 

  23. Kaczur V, Takacs M, Szalai C, Falus A, Nagy Z, Berencsi G, Balazs C (2000) Analysis of the genetic variability of the 1st (CCC/ACC, P52T) and the 10th exons (bp 1012-1704) of the TSH receptor gene in Graves’ disease. Eur J Immunogenet 27(1):17–23 [pii]:eji187

    Article  CAS  PubMed  Google Scholar 

  24. Muhlberg T, Herrmann K, Joba W, Kirchberger M, Heberling HJ, Heufelder AE (2000) Lack of association of nonautoimmune hyperfunctioning thyroid disorders and a germline polymorphism of codon 727 of the human thyrotropin receptor in a European Caucasian population. J Clin Endocrinol Metab 85(8):2640–2643

    CAS  PubMed  Google Scholar 

  25. Simanainen J, Kinch A, Westermark K, Winsa B, Bengtsson M, Schuppert F, Westermark B, Heldin NE (1999) Analysis of mutations in exon 1 of the human thyrotropin receptor gene: high frequency of the D36H and P52T polymorphic variants. Thyroid 9(1):7–11

    Article  CAS  PubMed  Google Scholar 

  26. Khalilzadeh O, Noshad S, Rashidi A, Amirzargar A (2011) Graves’ ophthalmopathy: a review of immunogenetics. Curr Genomics 12(8):564–575. doi:10.2174/138920211798120844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Silva CRS, Albuquerque PSB, Ervedosa FR, Mota JWS, Figueira A, Sebbenn AM (2011) Understanding the genetic diversity, spatial genetic structure and mating system at the hierarchical levels of fruits and individuals of a continuous Theobroma cacao population from the Brazilian Amazon. Heredity 106(6):973–985. doi:10.1038/Hdy.2010.145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Brand OJ, Barrett JC, Simmonds MJ, Newby PR, McCabe CJ, Bruce CK, Kysela B, Carr-Smith JD, Brix T, Hunt PJ, Wiersinga WM, Hegedus L, Connell J, Wass JA, Franklyn JA, Weetman AP, Heward JM, Gough SC (2009) Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves’ disease. Hum Mol Genet 18(9):1704–1713. doi:10.1093/hmg/ddp087

    Article  CAS  PubMed  Google Scholar 

  29. Brand OJ, Gough SC (2011) Immunogenetic mechanisms leading to thyroid autoimmunity: recent advances in identifying susceptibility genes and regions. Curr Genomics 12(8):526–541. doi:10.2174/138920211798120790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Colobran R, Armengol Mdel P, Faner R, Gartner M, Tykocinski LO, Lucas A, Ruiz M, Juan M, Kyewski B, Pujol-Borrell R (2011) Association of an SNP with intrathymic transcription of TSHR and Graves’ disease: a role for defective thymic tolerance. Hum Mol Genet 20(17):3415–3423. doi:10.1093/hmg/ddr247

    Article  CAS  PubMed  Google Scholar 

  31. Dechairo BM, Zabaneh D, Collins J, Brand O, Dawson GJ, Green AP, Mackay I, Franklyn JA, Connell JM, Wass JA, Wiersinga WM, Hegedus L, Brix T, Robinson BG, Hunt PJ, Weetman AP, Carey AH, Gough SC (2005) Association of the TSHR gene with Graves’ disease: the first disease specific locus. Eur J Hum Genet 13(11):1223–1230. doi:10.1038/sj.ejhg.5201485

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Wu HQ, Wang Q, Zhu YF, Zhang W, Guan LJ, Zhang JA (2012) Association between thyroid stimulating hormone receptor gene intron polymorphisms and autoimmune thyroid disease in a Chinese Han population. Endocr J 59(8):717–723 [pii]:DN/JST.JSTAGE/endocrj/EJ12-0024

    Article  CAS  PubMed  Google Scholar 

  33. Graves PN, Tomer Y, Davies TF (1992) Cloning and sequencing of a 1.3 KB variant of human thyrotropin receptor mRNA lacking the transmembrane domain. Biochem Biophys Res Commun 187(2):1135–1143 [pii]:0006-291X(92)91315-H

    Article  CAS  PubMed  Google Scholar 

  34. Takeshita A, Nagayama Y, Fujiyama K, Yokoyama N, Namba H, Yamashita S, Izumi M, Nagataki S (1992) Molecular cloning and sequencing of an alternatively spliced form of the human thyrotropin receptor transcript. Biochem Biophys Res Commun 188(3):1214–1219 10.1016/0006-291X(92)91360-3

    Article  CAS  PubMed  Google Scholar 

  35. Bahn RS, Burch HB, Cooper DS, Garber JR, Greenlee MC, Klein I, Laurberg P, McDougall IR, Montori VM, Rivkees SA, Ross DS, Sosa JA, Stan MN (2011) Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Endocr Pract 17(3):456–520. Q707415233782R31 [pii]

    Article  PubMed  Google Scholar 

  36. Maia AL, Scheffel RS, Meyer EL, Mazeto GM, Carvalho GA, Graf H, Vaisman M, Maciel LM, Ramos HE, Tincani AJ, Andrada NC, Ward LS (2013) The Brazilian consensus for the diagnosis and treatment of hyperthyroidism: recommendations by the Thyroid Department of the Brazilian Society of Endocrinology and Metabolism. Arq Bras Endocrinol Metabol 57(3):205–232 [pii]:S0004-27302013000300006

    Article  PubMed  Google Scholar 

  37. Mourits MP, Prummel MF, Wiersinga WM, Koornneef L (1997) Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clin Endocrinol (Oxf) 47(1):9–14

    Article  CAS  Google Scholar 

  38. Werner SC (1977) Modification of the classification of the eye changes of Graves’ disease: recommendations of the Ad Hoc Committee of the American Thyroid Association. J Clin Endocrinol Metab 44(1):203–204

    Article  CAS  PubMed  Google Scholar 

  39. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265. doi:10.1093/bioinformatics/bth457

    Article  CAS  PubMed  Google Scholar 

  40. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  PubMed  Google Scholar 

  41. Bahn RS, Dutton CM, Natt N, Joba W, Spitzweg C, Heufelder AE (1998) Thyrotropin receptor expression in Graves’ orbital adipose/connective tissues: potential autoantigen in Graves’ ophthalmopathy. J Clin Endocrinol Metab 83(3):998–1002

    CAS  PubMed  Google Scholar 

  42. Ponto KA, Kanitz M, Olivo PD, Pitz S, Pfeiffer N, Kahaly GJ (2011) Clinical relevance of thyroid-stimulating immunoglobulins in graves’ ophthalmopathy. Ophthalmology 118(11):2279–2285. doi:10.1016/j.ophtha.2011.03.030

    Article  PubMed  Google Scholar 

  43. Brix TH, Kyvik KO, Christensen K, Hegedus L (2001) Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J Clin Endocrinol Metab 86(2):930–934

    CAS  PubMed  Google Scholar 

  44. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. doi:10.1038/nature11233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, Harte R, Balasubramanian S, Tanzer A, Diekhans M, Reymond A, Hubbard TJ, Harrow J, Gerstein MB (2012) The GENCODE pseudogene resource. Genome Biol 13(9):R51. doi:10.1186/gb-2012-13-9-r51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wiersinga WM (2011) Autoimmunity in Graves’ ophthalmopathy: the result of an unfortunate marriage between TSH receptors and IGF-1 receptors? J Clin Endocrinol Metab 96(8):2386–2394. doi:10.1210/jc.2011-0307

    Article  CAS  PubMed  Google Scholar 

  47. Liu L, Wu HQ, Wang Q, Zhu YF, Zhang W, Guan LJ, Zhang JA (2012) Association between thyroid stimulating hormone receptor gene intron polymorphisms and autoimmune thyroid disease in a Chinese Han population. Endocr J 59(8):717–723

    Article  CAS  PubMed  Google Scholar 

  48. Ploski R, Szymanski K, Bednarczuk T (2011) The Genetic Basis of Graves’ Disease. Curr Genomics 12(8):542–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Jurecka-Lubieniecka B, Ploski R, Kula D, Szymanski K, Bednarczuk T, Ambroziak U, Hasse-Lazar K, Hyla-Klekot L, Tukiendorf A, Kolosza Z, Jarzab B (2014) Association between polymorphisms in the TSHR gene and Graves’ orbitopathy. PLoS One 9(7):e102653. doi:10.1371/journal.pone.0102653

    Article  PubMed Central  PubMed  Google Scholar 

  50. Hiratani H, Bowden DW, Ikegami S, Shirasawa S, Shimizu A, Iwatani Y, Akamizu T (2005) Multiple SNPs in intron 7 of thyrotropin receptor are associated with Graves’ disease. J Clin Endocrinol Metab 90(5):2898–2903. doi:10.1210/jc.2004-2148

    Article  CAS  PubMed  Google Scholar 

  51. Khalilzadeh O, Anvari M, Esteghamati A, Momen-Heravi F, Rashidi A, Amiri HM, Tahvildari M, Mahmoudi M, Amirzargar A (2010) Genetic susceptibility to Graves’ ophthalmopathy: the role of polymorphisms in anti-inflammatory cytokine genes. Ophthalmic Genet 31(4):215–220. doi:10.3109/13816810.2010.515648

    Article  CAS  PubMed  Google Scholar 

  52. Lacka K, Paradowska A, Gasinska T, Soszynska J, Wichary H, Kramer L, Lacki JK (2009) Interleukin-1beta gene (IL-1beta) polymorphisms (SNP -511 and SNP +3953) in thyroid-associated ophthalmopathy (TAO) among the Polish population. Curr Eye Res 34(3):215–220. doi:10.1080/02713680802699390

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Espaço da Escrita—Coordenadoria Geral da Universidade—UNICAMP—for the language services provided. A special thanks to the team of statisticians, Cleide Aparecida Moreira Silva and our group from the Laboratory of Cancer Molecular Genetics (GEMOCA) of the School of Medical Sciences. This study received financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Grant #2008/06567-5.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Bufalo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bufalo, N.E., dos Santos, R.B., Marcello, M.A. et al. TSHR intronic polymorphisms (rs179247 and rs12885526) and their role in the susceptibility of the Brazilian population to Graves’ disease and Graves’ ophthalmopathy. J Endocrinol Invest 38, 555–561 (2015). https://doi.org/10.1007/s40618-014-0228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0228-9

Keywords

Navigation