Journal of Endocrinological Investigation

, Volume 37, Issue 3, pp 261–268 | Cite as

Lipid and non-lipid cardiovascular risk factors in postmenopausal type 2 diabetic women with and without coronary heart disease

  • G. T. Russo
  • A. Giandalia
  • E. L. Romeo
  • M. Marotta
  • A. Alibrandi
  • C. De Francesco
  • K. V. Horvath
  • B. Asztalos
  • D. Cucinotta
Original Article



Coronary heart disease (CHD) is the leading cause of death in diabetic women. In addition to hyperglycemia, other factors may contribute to the excessive cardiovascular risk.


In this study we evaluated common and emerging risk factors in a selected group of postmenopausal type 2 diabetic women with (n = 36) and without CHD (n = 59), not taking lipid-lowering medications.


Clinical and lifestyle data were collected, and metabolic and lipid profile, as well as fasting plasma levels of total homocysteine (tHcy), folate, vitamin B12, C-reactive protein (hsCRP), interleukin 6 (IL-6), and vascular cell adhesion molecule-1 (VCAM-1) were measured in all participants.


Age, menopause and diabetes duration, family history for cardiovascular disease, prevalence of hypertension and current insulin use were greater in diabetic women with than without CHD (P < 0.05 for all comparisons). CHD women also showed higher levels of triglycerides, small dense LDL (sdLDL), remnant-like particle cholesterol, tHcy, and VCAM-1, and a lower creatinine clearance (P < 0.05 all). Conversely, the two groups were comparable for BMI, waist circumference, smoking habit, fasting plasma glucose, HbA1c, total cholesterol, low-density lipoprotein cholesterol (LDL-C), HDL cholesterol, folate, vitamin B12, hsCRP and IL-6 levels. At multivariate analysis, lower creatinine clearance (OR = 0.932, P = 0.017) and higher sdLDL serum concentration (OR = 1.224, P = 0.037) were the strongest risk factors associated with CHD in this population, whereas no significant association was noted with LDL-C.


Our data suggest that beyond LDL-C, a lower creatinine clearance and more subtle alterations of LDL particles, together with a constellation of several well known and emerging cardiovascular risk factors, are stronger contributors to the high CHD risk of diabetic women.


Creatine clearance SdLDL Coronary heart disease Type 2 diabetes Women 


  1. 1.
    Raza JA, Reinhart RA, Movahed A (2004) Ischemic heart disease in women and the role of hormone therapy. Int J Cardiol 96:7–19CrossRefPubMedGoogle Scholar
  2. 2.
    Kannel WB, McGee DL (1979) Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care 2:120–126CrossRefPubMedGoogle Scholar
  3. 3.
    Yusuf S, Hawken S, Ounpuu S, On behalf of the INTERHEART study investigators et al (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364:937–952CrossRefPubMedGoogle Scholar
  4. 4.
    Huxley R, Barzi F, Woodward M (2006) Excess risk of fatal coronary heart disease associated with diabetes in men and women: metaanalysis of 37 prospective cohort studies. BMJ 332:73–78CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Rivellese AA, Riccardi G, Vaccaro O (2010) Cardiovascular risk in women with diabetes. Nutr Metab Cardiovasc Dis 20:474–480CrossRefPubMedGoogle Scholar
  6. 6.
    UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853CrossRefGoogle Scholar
  7. 7.
    Grundy SM, Cleeman JI, Merz CN, For the Coordinating Committee of the National Cholesterol Education Program et al (2004) Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. Circulation 110:227–239CrossRefPubMedGoogle Scholar
  8. 8.
    Fruchart JC, Sacks F, Hermans MP et al (2008) The residual risk reduction initiative: a call to action to reduce residual vascular risk in patients with dyslipidemia. Am J Cardiol 102(10 Suppl):1K–34KCrossRefPubMedGoogle Scholar
  9. 9.
    Taskinen MR (2003) Diabetic dyslipidemia: from basic research to clinical practice. Diabetologia 46:733–749CrossRefPubMedGoogle Scholar
  10. 10.
    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143CrossRefPubMedGoogle Scholar
  11. 11.
    Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286:327–334CrossRefPubMedGoogle Scholar
  12. 12.
    Duncan BB, Schmidt MI, Pankow JS, Atherosclerosis Risk in Communities Study et al (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52:1799–1805CrossRefPubMedGoogle Scholar
  13. 13.
    Ridker PM, Buring JE, Cook NR, Rifai N (2003) C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14,719 initially healthy American women. Circulation 107:391–397CrossRefPubMedGoogle Scholar
  14. 14.
    Pfützner A, Forst T (2006) High-sensitivity C-reactive protein as cardiovascular risk marker in patients with diabetes mellitus. Diabetes Technol Ther 8:28–36CrossRefPubMedGoogle Scholar
  15. 15.
    Jager A, van Hinsbergh VW, Kostense PJ et al (2000) Increased levels of Soluble Vascular Cell Adhesion Molecule 1 are associated with risk of cardiovascular mortality in type 2 diabetes. The Hoorn Study. Diabetes 49:485–491CrossRefPubMedGoogle Scholar
  16. 16.
    Russo GT, Cucinotta D (2003) Hyperhomocysteinemia and cardiovascular risk in diabetes mellitus. Ann Ist Super Sanita 39:153–163PubMedGoogle Scholar
  17. 17.
    Russo GT, Di Benedetto A, Magazzù D et al (2001) Mild hyperhomocysteinemia, C677T polymorphism on methylenetetrahydrofolate reductase gene and the risk of macroangiopathy in type 2 diabetes: a prospective study. Acta Diabetol 48:95–101CrossRefGoogle Scholar
  18. 18.
    Clarke R, Halsey J, Lewington S, B-Vitamin Treatment Trialists’ Collaboration et al (2010) Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: meta-analysis of 8 randomized trials involving 37,485 individuals. Arch Intern Med 170:1622–1631CrossRefPubMedGoogle Scholar
  19. 19.
    Rossi MC, Cristofaro MR, Gentile S, Lucisano G, Manicardi V, Mulas MF, Napoli A, Nicolucci A, Pellegrini F, Suraci C, Giorda C (2013) Sex disparities in the quality of diabetes care: biological and cultural factors may play a different role for different outcomes: a cross-sectional observational study from the AMD annals initiative. Diabetes Care 8 Jul [Epub ahead of print] PubMed PMID: 23835692Google Scholar
  20. 20.
    Franzini L, Ardigò D, Cavalot F, Miccoli R, Rivellese AA, Trovati M, Zavaroni I, Vaccaro O (2013) Women show worse control of type 2 diabetes and cardiovascular disease risk factors than men: results from the MIND. IT Study Group of the Italian Society of Diabetology. Nutr Metab Cardiovasc Dis 23(3):235–241CrossRefPubMedGoogle Scholar
  21. 21.
    Solini A, Penno G, Bonora E, Renal Insufficiency And Cardiovascular Events (RIACE) Study Group et al (2012) Diverging association of reduced glomerular filtration rate and albuminuria with coronary and noncoronary events in patients with type 2 diabetes: the renal insufficiency and cardiovascular events (RIACE) Italian multicenter study. Diabetes Care 35:143–149CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Russo GT, Di Benedetto A, Alessi E et al (2008) Menopause modulates homocysteine levels in diabetic and non-diabetic women. J Endocrinol Invest 31:546–551PubMedGoogle Scholar
  23. 23.
    American Diabetes Association (2012) Standards of medical care in diabetes–2012. Diabetes Care 35(Suppl 1):S11–S63. doi:10.2337/dc12-s011 Google Scholar
  24. 24.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41CrossRefPubMedGoogle Scholar
  25. 25.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in men. Diabetologia 28:412–419CrossRefPubMedGoogle Scholar
  26. 26.
    Nakajima K, Saito T, Tamura A (1993) Cholesterol in remnant-like lipoproteins in human serum using monoclonal anti apo B-100 and anti apo A-I immunoaffinity mixed gels. Clin Chim Acta 223:53–71CrossRefPubMedGoogle Scholar
  27. 27.
    Hirano T, Ito Y, Saegusa H, Yoshino G (2003) A novel and simple method for quantitation of small dense low density lipoprotein. J Lipid Res 44:2193–2201CrossRefPubMedGoogle Scholar
  28. 28.
    Baggio G, Corsini A, Floreani A, Giannini S, Zagonel V (2013) Gender medicine: a task for the third millennium. Clin Chem Lab Med 51:713–727CrossRefPubMedGoogle Scholar
  29. 29.
    Avogaro A, Giorda C, Maggini M, Diabetes and Informatics Study Group, Association of Clinical Diabetologists, Istituto Superiore di Sanità et al (2007) Incidence of coronary heart disease in type 2 diabetic men and women: impact of microvascular complications, treatment, and geographic location. Diabetes Care 30:1241–1247CrossRefPubMedGoogle Scholar
  30. 30.
    Third Report of the National Cholesterol Education Program (NCEP) (2002) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). Circulation 106:3143–3421Google Scholar
  31. 31.
    Colhoun HM, Betteridge DJ, Durrington PN, CARDS investigators et al (2004) Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364:685–696CrossRefPubMedGoogle Scholar
  32. 32.
    Heart Protection Study Collaborative Group (2003) MRC/BHF heart protection study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361:2005–2016CrossRefGoogle Scholar
  33. 33.
    Russo GT, Horvath KV, Di Benedetto A, Giandalia A, Cucinotta D, Asztalos B (2010) Influence of menopause and cholesteryl ester transfer protein (CETP) TaqIB polymorphism on lipid profile and HDL subpopulations distribution in women with and without type 2 diabetes. Atherosclerosis 210:294–301CrossRefPubMedGoogle Scholar
  34. 34.
    Gruppo Annali Associazione Medici Diabetologi. Annali AMD 2012—Analisi prospettica degli indicatori dell’Assistenza del diabete in Italia (2004–2011) ISBN 978-88-96489-08-06Google Scholar
  35. 35.
    Hirayama S, Miida T (2012) Small dense LDL: an emerging risk factor for cardiovascular disease. Clin Chim Acta 414:215–224CrossRefPubMedGoogle Scholar
  36. 36.
    Austin MA, Hokanson JE, Brunzell JD (1994) Characterization of low-density lipoprotein subclasses: methodologic approaches and clinical relevance. Curr Opin Lipidol 5:395–403CrossRefPubMedGoogle Scholar
  37. 37.
    Lamarche B, Lemieux I, Despres JP (1999) The small, dense LDL phenotype and the risk of coronary heart disease: epidemiology, patho-physiology and therapeutic aspects. Diabetes Metab 25:199–211PubMedGoogle Scholar
  38. 38.
    Matthan N, Jalbert SM, Lamon-Fava S et al (2005) TRL, IDL, and LDL apolipoprotein B-100 and HDL apolipoprotein A-I kinetics as a function of age and menopausal status. Arterioscler Thromb Vasc Biol 25:1691–1696CrossRefPubMedGoogle Scholar
  39. 39.
    Ai M, Otokozawa S, Asztalos BF et al (2010) Small dense LDL cholesterol and coronary heart disease: results from the Framingham Offspring Study. Clin Chem 56:967–976CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR, UKPDS GROUP (2003) Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 63:225–232CrossRefPubMedGoogle Scholar
  41. 41.
    Muiesan ML, Ambrosioni E, Costa FV et al (2012) Sex differences in hypertension-related renal and cardiovascular diseases in Italy: the I-DEMAND study. J Hypertens 30:2378–2386CrossRefPubMedGoogle Scholar
  42. 42.
    Juutilainen A, Kortelainen S, Lehto S, Rönnemaa T, Pyörälä K, Laakso M (2004) Gender difference in the impact of type 2 diabetes on coronary heart disease risk. Diabetes Care 27:2898–2904CrossRefPubMedGoogle Scholar
  43. 43.
    Turner RC, Millns H, Neil HAW, Stratton IM, Manley SE, Matthews DE (1998) Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 316:823–828CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Ruige JB, Assendelft WJ, Dekker JM, Kostense PJ, Heine RJ, Bouter LM (1998) Insulin and risk of cardiovascular disease: a metaanalysis. Circulation 97:996–1001CrossRefPubMedGoogle Scholar
  45. 45.
    ORIGIN Trial Investigators, Gerstein HC, Bosch J, Dagenais GR, Díaz R, Jung H, Maggioni AP, Pogue J, Probstfield J, Ramachandran A, Riddle MC, Rydén LE, Yusuf S (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 367(4):319–328CrossRefPubMedGoogle Scholar
  46. 46.
    Kones R (2010) Rosuvastatin, inflammation, C-reactive protein, JUPITER, and primary prevention of cardiovascular disease—a perspective. Drug Des Devel Ther 4:383–441CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Kaptoge S, Di Angelantonio E, Lowe G et al (2010) C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375:132–140CrossRefPubMedGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2013

Authors and Affiliations

  • G. T. Russo
    • 1
  • A. Giandalia
    • 1
  • E. L. Romeo
    • 1
  • M. Marotta
    • 1
  • A. Alibrandi
    • 2
  • C. De Francesco
    • 1
  • K. V. Horvath
    • 3
  • B. Asztalos
    • 3
  • D. Cucinotta
    • 1
  1. 1.Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
  2. 2.Department of Statistic SciencesUniversityof MessinaMessinaItaly
  3. 3.Lipid Metabolism LaboratoryJM-USDA-Human Nutrition Research Center on Aging at Tufts UniversityBostonUSA

Personalised recommendations