Advertisement

Behavior Analysis in Practice

, Volume 11, Issue 4, pp 504–516 | Cite as

Using Microsoft Excel® to Build a Customized Partial-Interval Data Collection System

  • Cody A. Morris
  • Neil Deochand
  • Stephanie M. Peterson
Technical and Tutorials
  • 90 Downloads

Abstract

Using data to inform treatment decisions is a hallmark of behavior analysis. However, collecting the type of data that behavior analysts often require can be a labor-intensive and time-consuming task. Electronic data collection systems have been identified as a tool to alleviate some of the issues related to data collection, but many obstacles still exist. Current limitations of electronic data collection systems include cost, adaptability, ease of use, and compliance with privacy and security guidelines. The purpose of this article is to offer practitioners an alternative to buying an electronic data collection system by providing a task analysis on how to build customized electronic data collection systems using Microsoft Excel®. This task analysis is written for individuals with limited or no experience working with Excel® but may also be of utility to individuals fluent in Excel®. This task analysis is organized into three sections: (a) creating a basic electronic data collection table with dropdown menus and autofill features, (b) creating a timestamp for all data entered, and (c) creating automatically graphing displays of data.

Keywords

Data collection integrity Data collection timelines Electronic data collection Excel® 

Notes

Acknowledgements

Thanks to Dr. Wayne Fuqua and Dr. Heather McGee for providing feedback and suggestions in developing the first iteration of this electronic data collection system. Thanks to Nate VanderWeele, Kelsey Webster, Yisang Yang, Nicole Hollins, and Haley Hughes for their feedback on the task analysis.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

40617_2018_259_MOESM1_ESM.docx (10.6 mb)
ESM 1 (DOCX 10886 kb)
40617_2018_259_MOESM2_ESM.xlsx (48 kb)
ESM 2 (XLSX 47 kb)

References

  1. Alvero, A. M., Bucklin, B. R., & Austin, J. (2001). An objective review of the effectiveness and essential characteristics of performance feedback in organizational settings (1985-1998). Journal of Organizational Behavior Management, 21(1), 3–29.  https://doi.org/10.1300/J075v21n01_02.CrossRefGoogle Scholar
  2. Cavalari, R. N. S., Gillis, J. M., Kruser, N., & Romanczyk, R. G. (2015). Digital communication and Records in Service Provision and Supervision: Regulation and practice. Behavior Analysis in Practice, 8(2), 176–189.  https://doi.org/10.1007/s40617-014-0030-3.CrossRefGoogle Scholar
  3. Cole, D. M., & Witts, B. N. (2015). Formative graphing with a Microsoft Excel 2013 template. Behavior Analysis: Research and Practice, 15(3–4), 171–186.  https://doi.org/10.1037/bar0000021.Google Scholar
  4. Cooper, J. O., Heron, T. E., & Heward, W. L. (2007). Applied behavior analysis (2nd ed.). Columbus, OH: Merrill.Google Scholar
  5. Deochand, N., Costello, M. S., & Fuqua, R. W. (2015). Phase-change lines, scale breaks, and trend lines using Excel 2013. Journal of Applied Behavior Analysis, 48, 478–493.  https://doi.org/10.1002/jaba.198.CrossRefGoogle Scholar
  6. Dixon, M. R. (2003). Creating a portable data-collection system with Microsoft embedded visual tools for the pocket PC. Journal of Applied Behavior Analysis, 36, 271–284.  https://doi.org/10.1901/jaba.2003.36-271.CrossRefGoogle Scholar
  7. Dixon, M. R., Jackson, J. W., Small, S. L., Horner-King, M. J., Lik, N. M. K., Garcia, Y., & Rosales, R. (2009). Creating single-subject design graphs in Microsoft Excel™ 2007. Journal of Applied Behavior Analysis, 42, 277–293.  https://doi.org/10.1901/jaba.2009.42-277.CrossRefGoogle Scholar
  8. Fiske, K., & Delmolino, L. (2012). Use of discontinuous methods of data collection in behavioral intervention: Guidelines for practitioners. Behavior Analysis in Practice, 5(2), 77–81.  https://doi.org/10.1007/BF03391826.CrossRefGoogle Scholar
  9. Jackson, J., & Dixon, M. R. (2007). A mobile computing solution for collecting functional analysis data on a pocket PC. Journal of Applied Behavior Analysis, 40, 359–384.  https://doi.org/10.1901/jaba.2007.46-06.CrossRefGoogle Scholar
  10. Kahng, S. W., & Iwata, B. A. (1998). Computerized systems for collecting real-time observational data. Journal of Applied Behavior Analysis, 31, 253–261.  https://doi.org/10.1901/jaba.1998.31-253.CrossRefGoogle Scholar
  11. LeBlanc, L. A., Raetz, P. B., Sellers, T. P., & Carr, J. E. (2016). A proposed model for selecting measurement procedures for the assessment and treatment of problem behavior. Behavior Analysis in Practice, 9, 77–83.  https://doi.org/10.1007/s40617-015-0063-2.CrossRefGoogle Scholar
  12. Madsen, E. K., Peck, J. A., & Valdovinos, M. G. (2015). A review of research on direct-care staff data collection regarding the severity and function of challenging behavior in individuals with intellectual and developmental disabilities. Journal of Intellectual Disabilities, 20, 296–306.  https://doi.org/10.1177/1744629515612328.CrossRefGoogle Scholar
  13. Najdowski, A. C., Chilingaryan, V., Bergstrom, R., Granpeesheh, D., Balasanyan, S., Aguilar, B., & Tarbox, J. (2009). Comparison of data-collection methods in a behavioral intervention program for children with pervasive developmental disorders: A replication. Journal of Applied Behavior Analysis, 42, 827–832.  https://doi.org/10.1901/jaba.2009.42-827.CrossRefGoogle Scholar
  14. Rios, D., Kazemi, E., & Peterson, S. M. (2018). Best practices and considerations for effective services provision via remote technology. Behavior Analysis: Research and Practice.Google Scholar
  15. Sleeper, J. D., LeBlanc, L. A., Mueller, J., Valentino, A. L., Fazzio, D., & Raetz, P. B. (2017). The effects of electronic data collection on the percentage of current clinician graphs and organizational return on investment. Journal of Organizational Behavior Management, 37, 83–95.  https://doi.org/10.1080/01608061.2016.1267065.CrossRefGoogle Scholar
  16. Taber-Doughty, T., & Jasper, A. D. (2012). Does latency in recording data make a difference? Confirming the accuracy of teachers’ data. Focus on Autism and Other Developmental Disabilities, 27(3), 168–176.  https://doi.org/10.1177/1088357612451121.CrossRefGoogle Scholar
  17. Tapp, J., Ticha, R., Kryzer, E., Gustafson, M., Gunnar, M. R., & Symons, F. J. (2006). Comparing observational software with paper and pencil for time-sampled data: A field test of interval manager (INTMAN). Behavior Research Methods, 38(1), 165–169.  https://doi.org/10.3758/BF03192763.CrossRefGoogle Scholar
  18. Whiting, S. W., & Dixon, M. R. (2012). Creating an I-phone application for collecting continuous abc data. Journal of Applied Behavior Analysis, 45, 643–656.  https://doi.org/10.1901/jaba.2012.45-643.CrossRefGoogle Scholar
  19. Wirth, O., Slaven, J., & Taylor, M. A. (2014). Interval sampling methods and measurement error: A computer simulation. Journal of Applied Behavior Analysis, 47, 83–100.  https://doi.org/10.1002/jaba.93.CrossRefGoogle Scholar

Copyright information

© Association for Behavior Analysis International 2018

Authors and Affiliations

  1. 1.Department of PsychologyWestern Michigan UniversityKalamazooUSA

Personalised recommendations