Perspectives on Behavior Science

, Volume 41, Issue 1, pp 121–154 | Cite as

The Emergence of Stimulus Relations: Human and Computer Learning

  • Chris NinnessEmail author
  • Sharon K. Ninness
  • Marilyn Rumph
  • David Lawson


Traditionally, investigations in the area of stimulus equivalence have employed humans as experimental participants. Recently, however, artificial neural network models (often referred to as connectionist models [CMs]) have been developed to simulate performances seen among human participants when training various types of stimulus relations. Two types of neural network models have shown particular promise in recent years. RELNET has demonstrated its capacity to approximate human acquisition of stimulus relations using simulated matching-to-sample (MTS) procedures (e.g., Lyddy & Barnes-Holmes Journal of Speech and Language Pathology and Applied Behavior Analysis, 2, 14–24, 2007). Other newly developed connectionist algorithms train stimulus relations by way of compound stimuli (e.g., Tovar & Chavez The Psychological Record, 62, 747–762, 2012; Vernucio & Debert The Psychological Record, 66, 439–449, 2016). What makes all of these CMs interesting to many behavioral researchers is their apparent ability to simulate the acquisition of diversified stimulus relations as an analogue to human learning; that is, neural networks learn over a series of training epochs such that these models become capable of deriving novel or untrained stimulus relations. With the goal of explaining these quickly evolving approaches to practical and experimental endeavors in behavior analysis, we offer an overview of existing CMs as they apply to behavior–analytic theory and practice. We provide a brief overview of derived stimulus relations as applied to human academic remediation, and we argue that human and simulated human investigations have symbiotic experimental potential. Additionally, we provide a working example of a neural network referred to as emergent virtual analytics (EVA). This model demonstrates a process by which artificial neural networks can be employed by behavior–analytic researchers to understand, simulate, and predict derived stimulus relations made by human participants.


Contextual control Stimulus equivalence Connectionist model Epochs Momentum 


Compliance with Ethical Standards

No animals or humans were involved in the development of this study. All data were acquired by way of artificial intelligence systems.

Conflict of Interest

All authors declare “No conflicts of interest.”

Supplementary material

40614_2017_125_MOESM1_ESM.csv (0 kb)
ESM 1 (CSV 140 bytes)


  1. Abbass, H. A. (2002). An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine, 25, 265–281. doi: 10.1016/s0933-3657(02)00028-3.CrossRefPubMedGoogle Scholar
  2. Aleven, V. (2013). Help seeking and intelligent tutoring systems: theoretical perspectives and a step towards theoretical integration. In R. Azevedo & V. Aleven (Eds.), International handbook of metacognition and learning technologies (pp. 311–335). New York, NY: Springer. doi: 10.1007/978-1-4419-5546-3_21.CrossRefGoogle Scholar
  3. Allamehzadeh, M., & Mokhtari, M. (2003). Prediction of aftershocks distribution using self-organizing feature maps (SOFM) and its application on the Birjand-Ghaen and Izmit earthquakes. Journal of Seismology and Earthquake Engineering, 5, 1–15. doi: 10.1016/j.quaint.2012.07.059.Google Scholar
  4. Arciniegas, I., Daniel, B., & Embrechts, M. J. (2001). Exploring financial crises data with self-organizing maps (SOM). In N. Allinson, L. Allinson, H. Yin, & J. Slack (Eds.), Advances in self-organizing maps (pp. 30–39). London, England: Springer-Verlag.Google Scholar
  5. Arntzen, E., & Holth, P. (1997). Probability of stimulus equivalence as a function of training design. The Psychological Record, 47, 309–320.CrossRefGoogle Scholar
  6. Barnes, D., & Hampson, P. J. (1993). Stimulus equivalence and connectionism: implications for behavior analysis and cognitive science. Psychological Record, 43, 617–638.CrossRefGoogle Scholar
  7. Bullinaria, J. A. (1997). Modeling reading, spelling, and past tense learning with artificial neural networks. Brain and Language, 59, 236–266. doi: 10.1006/brln.1997.1818.CrossRefPubMedGoogle Scholar
  8. Burgos, J. E. (2007). Autoshaping and automaintenance: a neural-network approach. Journal of the Experimental Analysis of Behavior, 88, 115–130. doi: 10.1901/jeab.2007.75-04.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cohen, A., & Sackrowitz, H. B. (2002). Inference for the model of several treatments and a control. Journal of Statistical Planning and Inference, 107, 89–101. doi: 10.1016/s0378-3758(02)00245-8.CrossRefGoogle Scholar
  10. Connell, J. E., & Witt, J. C. (2004). Applications of computer-based instruction: using specialized software to aid letter-name and letter-sound recognition. Journal of Applied Behavior Analysis, 37, 67–71. doi: 10.1901/jaba.2004.37-67.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Critchfield, T. S., & Fienup, D. M. (2008). Stimulus equivalence. In S. F. Davis & W. F. Buskist (Eds.), 21st century psychology: a reference handbook (pp. 360–372). Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  12. Critchfield, T. S., & Fienup, D. M. (2010). Using stimulus equivalence technology to teach about statistical inference in a group setting. Journal of Applied Behavior Analysis, 43, 437–462. doi: 10.1901/jaba.2010.43-763.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Critchfield, T. S., & Fienup, D. M. (2013). A “happy hour” effect in translational stimulus relations research. Experimental Analysis of Human Behavior Bulletin, 29, 2–7.Google Scholar
  14. Cullinan, V., Barnes, D., Hampson, P. J., & Lyddy, F. (1994). A transfer of explicitly and nonexplicitly trained sequence responses through equivalence relations: an experimental demonstration and connectionist model. The Psychological Record, 44, 559–585.CrossRefGoogle Scholar
  15. De Rose, J. C., De Souza, D. G., & Hanna, E. S. (1996). Teaching reading and spelling: exclusion and stimulus equivalence. Journal of Applied Behavior Analysis, 29, 451–469. doi: 10.1901/jaba.1996.29-451.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Desmarais, M. C., Meshkinfam, P., & Gagnon, M. (2006). Learned student models with item to item knowledge structures. User Modeling and User-Adapted Interaction, 16, 403–434. doi: 10.1007/s11257-006-9016-3.CrossRefGoogle Scholar
  17. Desmarais, M. C., & Pu, X. (2005). A Bayesian inference adaptive testing framework and its comparison with item response theory. International Journal of Artificial Intelligence in Education, 15, 291–323. doi: 10.1007/11527886_51.Google Scholar
  18. Donahoe, J. W., & Burgos, J. E. (2000). Behavior analysis and revaluation. Journal of the Experimental Analysis of Behavior, 74, 331–346. doi: 10.1901/jeab.2000.74-331.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Erdal, H. I., & Ekinci, A. (2013). A comparison of various artificial intelligence methods in the prediction of bank failures. Computational Economics, 42, 199–215. doi: 10.1007/s10614-012-9332-0.CrossRefGoogle Scholar
  20. Feng, M., Heffernan, N. T., & Koedinger, K. R. (2009). Addressing the assessment challenge in an intelligent tutoring system that tutors as it assesses. User Modeling and User-Adapted Interaction, 19, 243–266. doi: 10.1007/s11257-009-9063-7.CrossRefGoogle Scholar
  21. Fienup, D. M., Covey, D. P., & Critchfield, T. S. (2010). Teaching brain–behavior relations economically with stimulus equivalence technology. Journal of Applied Behavior Analysis, 43, 19–33. doi: 10.1901/jaba.2010.43-19.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fienup, D. M., & Critchfield, T. S. (2010). Efficiently establishing concepts of inferential statistics and hypothesis decision making through contextually controlled equivalence classes. Journal of Applied Behavior Analysis, 43, 19–33. doi: 10.1901/jaba.2010.43-437.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fienup, D. M., & Critchfield, T. S. (2011). Transportability of equivalence-based programmed instruction: efficacy and efficiency in a college classroom. Journal of Applied Behavior Analysis, 43, 763–768. doi: 10.1901/jaba.2011.44-435.Google Scholar
  24. Fienup, D. M., Critchfield, T. S., & Covey, D. P. (2009). Building contextually-controlled equivalence classes to teach about inferential statistics: a preliminary demonstration. Experimental Analysis of Human Behavior Bulletin, 27, 1–10.Google Scholar
  25. Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: a critical analysis. Cognition, 28, 3–71. doi: 10.1016/0010-0277(88)90031-5.CrossRefPubMedGoogle Scholar
  26. Guo, D., Liao, K., & Morgan, M. (2007). Visualizing patterns in a global terrorism incident database. Environment and Planning B: Planning and Design, 34, 767–784. doi: 10.1068/b3305.CrossRefGoogle Scholar
  27. Hagan, M., Demuth, H., & Beale, M. (2002). Neural network design. Boston, MA: PWS.Google Scholar
  28. Hamilton, B. E., & Silberberg, A. (1978). Contrast and autoshaping in multiple schedules varying reinforcer rate and duration. Journal of the Experimental Analysis of Behavior, 30, 107–122. doi: 10.1901/jeab.1978.30-107.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hayes, S. C., Fox, E., Gifford, E. V., Wilson, K. G., Barnes-Holmes, D., & Healy, O. (2001). Derived relational responding as learned behavior. In S. C. Hayes, D. Barnes-Holmes, & B. Roche (Eds.), Relational frame theory: a post-Skinnerian account of human language and cognition (pp. 21–50). New York, NY: Plenum.Google Scholar
  30. Haykin, S. O. (2008). Neural networks and learning machines (3rd ed.). Upper Saddle River, NJ: Pearson Education.Google Scholar
  31. Heller, J., Steiner, C., Hockemeyer, C., & Albert, D. (2006). Competence-based knowledge structures for personalised learning. International Journal on E-Learning, 5, 75–88.Google Scholar
  32. Huang, Y., Chen, J., Chang, Y., Huang, C., Moon, W. K., Kuo, W., et al. (2013). Diagnosis of solid breast tumors using vessel analysis in three-dimensional power Doppler ultrasound images. Journal of Digital Imaging, 26, 731–739. doi: 10.1007/s10278-012-9556-5.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kemp, S. N., & Eckerman, D. A. (2001). Situational descriptions of behavioral procedures: the in situ testbed. Journal of the Experimental Analysis of Behavior, 75, 135–164. doi: 10.1901/jeab.2001.75-135.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Khan, M. R., & Ondrusek, C. (2000). Short-term electric demand prognosis using artificial neural networks. Electrical Engineering, 51, 296–300.Google Scholar
  35. Knutti, R., Stocker, T. F., Joos, F., & Plattner, G. K. (2003). Probabilistic climate change projections using neural networks. Climate Dynamics, 21, 257–272. doi: 10.1007/s00382-003-0345-1.CrossRefGoogle Scholar
  36. Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The knowledge-learning-instruction framework: bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36, 757–798. doi: 10.1111/j.1551-6709.2012.01245.x.CrossRefPubMedGoogle Scholar
  37. LeBlanc, L. A., Miguel, C. F., Cummings, A. R., Goldsmith, T. R., & Carr, J. E. (2003). The effects of three stimulus-equivalence testing conditions on emergent US geography relations of children diagnosed with autism. Behavioral Interventions, 18, 279–289. doi: 10.1002/bin.144.CrossRefGoogle Scholar
  38. Lovett, S., Rehfeldt, R. A., Garcia, Y., & Dunning, J. (2011). Comparison of a stimulus equivalence protocol and traditional lecture for teaching single-subject designs. Journal of Applied Behavior Analysis, 44, 819–833. doi: 10.1901/jaba.2011.44-819.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lyddy, F., & Barnes-Holmes, D. (2007). Stimulus equivalence as a function of training protocol in a connectionist network. Journal of Speech and Language Pathology and Applied Behavior Analysis, 2, 14–24. doi: 10.1037/h0100204.Google Scholar
  40. Lyddy, F., Barnes-Holmes, D., & Hampson, P. J. (2001). A transfer of sequence function via equivalence in a connectionist network. The Psychological Record, 51, 409–428. doi: 10.1037/h0100204.CrossRefGoogle Scholar
  41. Maqsood, I., Khan, M. R., & Abraham, A. (2004). An ensemble of neural networks for weather forecasting. Neural Computing and Applications, 13, 112–122. doi: 10.1007/s00521-004-0413-4.CrossRefGoogle Scholar
  42. McCaffrey, J. (2014). Neural networks using C# succinctly [Blog post]. Retrieved from
  43. McCaffrey, J. (2015). Coding neural network back-propagation using C#. Visual Studio Magazine. Retrieved from
  44. McClelland, J. L., & Rumelhart, D. E. (1986). Parallel distributed processing, vol. 2: psychological and biological models. Cambridge, MA: MIT Press.Google Scholar
  45. Nason, S., & Zabrucky, K. (1988). A program for comprehension monitoring of text using HyperCard for the Macintosh. Behavior Research Methods, Instruments, & Computers, 20, 499–502.CrossRefGoogle Scholar
  46. Ninness, C., Henderson, R., Ninness, C., & Halle, S. (2015). Probability pyramiding revisited: univariate, multivariate, and neural networking analyses of complex data. Behavior and Social Issues, 24, 164–186. doi: 10.5210/bsi.v24i0.6048.CrossRefGoogle Scholar
  47. Ninness, C., Lauter, J., Coffee, M., Clary, L., Kelly, E., Rumph, M., et al. (2012). Behavioral and biological neural network analyses: a common pathway toward pattern recognition and prediction. The Psychological Record, 62, 579–598. doi: 10.5210/bsi.v22i0.4450.CrossRefGoogle Scholar
  48. Ninness, C., Rumph, M., Clary, L., Lawson, D., Lacy, J. T., Halle, S., et al. (2013). Neural network and multivariate analysis: pattern recognition in academic and social research. Behavior and Social Issues, 22, 49–63. doi: 10.5210/bsi.v22i0.4450.CrossRefGoogle Scholar
  49. Ninness, C., Rumph, R., McCuller, G., Harrison, C., Vasquez, E., Ford, A., et al. (2005). A relational frame and artificial neural network approach to computer-interactive mathematics. The Psychological Record, 55, 561–570. doi: 10.1007/bf03395503.CrossRefGoogle Scholar
  50. Oğcu, G., Demirel, O. F., & Zaim, S. (2012). Forecasting electrical consumption with neural networks and support vector regression. Procedia – Social and Behavioral Sciences, 58, 1576–1585. doi: 10.1016/j.sbspro.2012.09.1144.CrossRefGoogle Scholar
  51. Rumelhart, D. E., Hinton, G. E., & Williams, D. C. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536. doi: 10.1038/323533a0.CrossRefGoogle Scholar
  52. Sidman, M., & Cresson, O. (1973). Reading and crossmodal transfer of stimulus equivalences in severe retardation. American Journal of Mental Deficiency, 77, 515–523.PubMedGoogle Scholar
  53. Sidman, M., & Tailby, W. (1982). Conditional discrimination vs. matching to sample: an expansion of the testing paradigm. Journal of the Experimental Analysis of Behavior, 37, 5–22.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Steele, D. M., & Hayes, S. C. (1991). Stimulus equivalence and arbitrarily applicable relational responding. Journal of the Experimental Analysis of Behavior, 56, 519–555. doi: 10.1901/jeab.1991.56-519.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Stromer, R., Mackay, H. A., & Stoddard, L. T. (1992). Classroom applications of stimulus equivalence technology. Journal of Behavioral Education, 2, 225–256. doi: 10.1007/bf00948817.CrossRefGoogle Scholar
  56. Tovar, A. E., & Chavez, A. T. (2012). A connectionist model of stimulus class formation with a yes/no procedure and compound stimuli. The Psychological Record, 62, 747–762. doi: 10.1007/s40732-016-0184-1.CrossRefGoogle Scholar
  57. Vernucio, R. R., & Debert, P. (2016). Computational simulation of equivalence class formation using the go/no-go procedure with compound stimuli. The Psychological Record, 66, 439–449. doi: 10.1007/s40732-016-0184-1.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Walker, D., Rehfeldt, R. A., & Ninness, C. (2010). Using the stimulus equivalence paradigm to teach course material in an undergraduate rehabilitation course. Journal of Applied Behavior Analysis, 43, 615–633. doi: 10.1901/jaba.2010.43-615.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wolberg, W. (1992). Breast cancer Wisconsin (diagnostic) data set [UCI Machine Learning Repository]. Retrieved from
  60. You, H., & Rumbe, G. (2010). Comparative study of classification techniques on breast cancer FNA biopsy data. International Journal of Artificial Intelligence and Interactive Multimedia, 3, 5–12. doi: 10.9781/ijimai.2010.131.CrossRefGoogle Scholar

Copyright information

© Association for Behavior Analysis International 2017

Authors and Affiliations

  1. 1.Behavioral Software SystemsNacogdochesUSA
  2. 2.Texas A&M University—CommerceCommerceUSA
  3. 3.Sam Houston State UniversityHuntsvilleUSA

Personalised recommendations