Advertisement

The Behavior Analyst

, Volume 40, Issue 2, pp 393–418 | Cite as

NEURAL Networks and Consumer Behavior: NEURAL Models, Logistic Regression, and the Behavioral Perspective Model

  • Max N. GreeneEmail author
  • Peter H. Morgan
  • Gordon R. Foxall
BEHAVIORAL ECONOMICS IN CONSUMER BEHAVIOR ANALYSIS

Abstract

This paper investigates the ability of connectionist models to explain consumer behavior, focusing on the feedforward neural network model, and explores the possibility of expanding the theoretical framework of the Behavioral Perspective Model to incorporate connectionist constructs. Numerous neural network models of varying complexity are developed to predict consumer loyalty as a crucial aspect of consumer behavior. Their performance is compared with the more traditional logistic regression model and it is found that neural networks offer consistent advantage over logistic regression in the prediction of consumer loyalty. Independently determined Utilitarian and Informational Reinforcement variables are shown to make a noticeable contribution to the explanation of consumer choice. The potential of connectionist models for predicting and explaining consumer behavior is discussed and routes for future research are suggested to investigate the predictive and explanatory capacity of connectionist models, such as neural network models, and for the integration of these into consumer behavior analysis within the theoretical framework of the Behavioral Perspective Model.

Keywords

Consumer behaviorᅟ Behavioral perspective model Artificial neural networks Neural models NN Connectionism Connectionist models 

Notes

Acknowledgements

This research has been supported by the Economic and Social Research Council and by the Marketing and Strategy section at Cardiff University Business School.

Compliance with Ethical Standards

Conflict of Interest

The Authors declare that there is no conflict of interest.

References

  1. Adya, M., & Collopy, F. (1998). How effective are neural networks at forecasting and prediction? A review and evaluation. Journal of Forecasting, 17(5–6), 481–495.CrossRefGoogle Scholar
  2. Aiken, L. S., West, S. G., & Reno, R. R. (1991). Multiple regression: Testing and interpreting interactions. Inc: Sage Publications.Google Scholar
  3. Anderson, P. F. (1986). On method in consumer research: A critical relativist perspective. Journal of Consumer Research, 13(2), 155–173.CrossRefGoogle Scholar
  4. Bashford, S. (2009). Bring me sunshine. Marketing Theory, 32–33.Google Scholar
  5. Baum, W. M. (1974). On two types of deviation from the matching law: Bias and undermatching. Journal of the Experimental Analysis of Behavior, 22(1), 231–242.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baum, W. M. (1979). Matching, undermatching, and overmatching in studies of choice. Journal of the Experimental Analysis of Behavior, 32(2), 269–281.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bishop, C. M. (1995). Neural networks for pattern recognition. New York: Oxford University Press.Google Scholar
  8. Calder, B. J., & Tybout, A. M. (1987). What consumer research is. Journal of Consumer Research, 14(1), 136–140.CrossRefGoogle Scholar
  9. Cornwell, B., Chi Cui, C., Mitchell, V., Schlegelmilch, B., Dzulkiflee, A., & Chan, J. (2005). A cross-cultural study of the role of religion in consumers' ethical positions. International Marketing Review, 22(5), 531–546.CrossRefGoogle Scholar
  10. Cunningham, L. F., Young, C. E., Moonkyu, L., & Ulaga, W. (2006). Customer perceptions of service dimensions: Cross-cultural analysis and perspective. International Marketing Review, 23(2), 192–210.CrossRefGoogle Scholar
  11. Curry, B., & Morgan, P. H. (2003). Neural networks, linear functions and neglected non-linearity. Computational Management Science, 1(1), 15–29.CrossRefGoogle Scholar
  12. Curry, B., & Moutinho, L. (1993). Neural networks in marketing: Modelling consumer responses to advertising stimuli. European Journal of Marketing, 27(7), 5–20.CrossRefGoogle Scholar
  13. Davies, F. M., Goode, M. M. H., Moutinho, L. A., & Ogbonna, E. (2001). Critical factors in consumer supermarket shopping behaviour: A neural network approach. Journal of Consumer Behaviour, 1(1), 35.CrossRefGoogle Scholar
  14. Donahoe, J. W., & Palmer, D. C. (1994). Learning and complex behavior. Boston: Allyn & Bacon.Google Scholar
  15. Ehrenberg, A., & Goodhardt, G. (1979). Essays on understanding buyer behavior. Walter Thompson Co. and Market Research Corporation of America, New York, NY.Google Scholar
  16. Er, M., Wu, S., Lu, J., & Toh, H. (2002). Face recognition with radial basis function (RBF) neural networks. Neural Networks, IEEE Transactions on, 13(3), 697–710.CrossRefGoogle Scholar
  17. Foxall, G. R. (1980). Marketing models of buyer behaviour: A critical view. European Research, 8(5), 195.Google Scholar
  18. Foxall, G. R. (1984). Corporate innovation: Marketing and strategy. London: Croom HELM Lid.Google Scholar
  19. Foxall, G. R. (1990). Consumer psychology in behavioral perspective. Beard Books.Google Scholar
  20. Foxall, G. R. (1999). The substitutability of brands. Managerial and Decision Economics, 20(5), 241–257.CrossRefGoogle Scholar
  21. Foxall, G. R. (2003). The behavior analysis of consumer choice: An introduction to the special issue. Journal of Economic Psychology, 24(5), 581–588.CrossRefGoogle Scholar
  22. Foxall, G. R. (2009). Interpreting consumer choice: The behavioural perspective model. Routledge.Google Scholar
  23. Foxall, G. R. (2010). Interpreting consumer choice. New York: Routledge.Google Scholar
  24. Foxall, G. R. (2016). Perspectives on Consumer Choice: From Behavior to Action, From Action to Agency. London and New York: Palgrave Macmillan.Google Scholar
  25. Foxall, G. R., & James, V. K. (2001). The behavioral basis of consumer choice: A preliminary analysis. European Journal of Behavior Analysis, 2, 209–220.CrossRefGoogle Scholar
  26. Foxall, G. R., & James, V. K. (2003). The behavioral ecology of brand choice: How and what do consumers maximize? Psychology and Marketing, 20(9), 811–836.CrossRefGoogle Scholar
  27. Foxall, G. R., & Schrezenmaier, T. C. (2003). The behavioral economics of consumer brand choice: Establishing a methodology. Journal of Economic Psychology, 24(5), 675–695.CrossRefGoogle Scholar
  28. Foxall, G. R., Oliveira-Castro, J. M., & Schrezenmaier, T. C. (2004). The behavioral economics of consumer brand choice: Patterns of reinforcement and utility maximization. Behavioural Processes, 66(3), 235–260.CrossRefPubMedGoogle Scholar
  29. Foxall, G. R., Oliveira-Castro, J. M., James, V. K., Yani-de Soriano, M., & Sigurdsson, V. (2006). Consumer behavior analysis and social marketing: The case of environmental conservation. Behavior and social issues, 15(1), 101–124.CrossRefGoogle Scholar
  30. Foxall, G. R., Wells, V. K., Chang, S. W., & Oliveira-Castro, J. M. (2010). Substitutability and independence: Matching analyses of brands and products. Journal of Organizational Behavior Management, 30(2), 16.Google Scholar
  31. Foxall, G. R., Yan, J., Oliveira-Castro, J. M., & Wells, V. K. (2011). Brand-related and situational influences on demand elasticity. Journal of Business Research.Google Scholar
  32. Güneren, E., & Öztüren, A. (2008). Influence of ethnocentric tendency of consumers on their purchase intentions in North Cyprus. Journal of Euromarketing, 17(3/4), 219–231.CrossRefGoogle Scholar
  33. Haykin, S. (1994). Neural networks: A comprehensive foundation. Oxford: Maxwell Macmillan International.Google Scholar
  34. Hebb, D. O. (1949). The organisation of behaviour: New York: Wiley.Google Scholar
  35. Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of frequency of reinforcement. Journal of the Experimental Analysis of Behavior, 4(3), 267.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Herrnstein, R. J. (1970). On the law of effect. Journal of the Experimental Analysis of Behavior, 13, 243–266.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Herrnstein, R. J. (1997). The matching law. In H. Rachlin & D. Laibson (Eds.), Papers in psychology and economics. New York: Sage.Google Scholar
  38. Herrnstein, R. J., Rachlin, H., & Laibson, D. I. (1997). The matching law: Papers in psychology and economics. Cambridge: Harvard University Press.Google Scholar
  39. Holbrook, M. B. (1987). What is consumer research? Journal of Consumer Research, 14(1), 128–132.CrossRefGoogle Scholar
  40. Kagel, J. H., Battalio, R. C., & Green, L. (1995). Economic choice theory: An experimental analysis of animal behavior. Cambridge Univ Pr.Google Scholar
  41. van Kenhove, P., Vermeir, I., & Verniers, S. (2001). An empirical investigation of the relationship between ethical beliefs, ethical ideology, political preference and need for closure. Journal of Business Ethics, 32(4), 347–361.CrossRefGoogle Scholar
  42. Lawrence, S., Giles, C., Tsoi, A., & Back, A. (2002). Face recognition: A convolutional neural-network approach. Neural Networks, IEEE Transactions on, 8(1), 98–113.CrossRefGoogle Scholar
  43. Lu Hsu, J., & Han-Peng, N. (2008). Who are ethnocentric? Examining consumer ethnocentrism in Chinese societies. Journal of Consumer Behaviour, 7(6), 436–447.CrossRefGoogle Scholar
  44. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.CrossRefGoogle Scholar
  45. McKee, A. (1984). Social economy and the theory of consumer behavior. International Journal of Social Economics, 11(3/4), 45.CrossRefGoogle Scholar
  46. Oliveira-Castro, J. M., Foxall, G. R., & Schrezenmaier, T. C. (2005). Patterns of consumer response to retail price differentials. Service Industries Journal, 25(3), 309–335.CrossRefGoogle Scholar
  47. Oliveira-Castro, J. M., Foxall, G., & James, V. (2008). Individual differences in price responsiveness within and across food brands. Service Industries Journal, 28(6), 733–753.CrossRefGoogle Scholar
  48. Oliveira-Castro, J. M., Foxall, G. R., & Wells, V. K. (2010). Consumer brand choice: Money allocation as a function of brand reinforcing attributes. Journal of Organizational Behavior Management, 30(2), 15.CrossRefGoogle Scholar
  49. Oliveira-Castro, J. M., Foxall, G. R., Yan, J., & Wells, V. K. (2011). A behavioral-economic analysis of the essential value of brands. Behavioural Processes.Google Scholar
  50. Oliver, R. L. (1999). Whence consumer loyalty? Journal of Marketing, 33–44.Google Scholar
  51. Pachauri, M. (2002). Consumer behavior a literature review. Marketing Review, 2(3), 319.CrossRefGoogle Scholar
  52. Pearce, J. M. (1994). Similarity and discrimination: A selective review and a connectionist model. Psychological Review, 101(4), 587.CrossRefPubMedGoogle Scholar
  53. Pearce, J. M. (2002). Evaluation and development of a connectionist theory of configural learning. Animal Learning & Behavior, 30(2), 73.CrossRefGoogle Scholar
  54. Rachlin, H., Kagel, J. H., & Battalio, R. C. (1980). Substitutability in time allocation. Psychological Review, 87(4), 355.CrossRefGoogle Scholar
  55. R-Development-Core-Team. (2010). R: A language and environment for statistical computing. Vienna: Austria.Google Scholar
  56. Ripley, B. D. (1996). Pattern recognition and neural networks. In Cambridge. New York: Cambridge University Press.Google Scholar
  57. Rowley, H., Baluja, S., & Kanade, T. (2002). Neural network-based face detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(1), 23–38.CrossRefGoogle Scholar
  58. Rumelhart, D. E., & McClelland, J. L. (1987). Parallel distributed processing, explotation in the microstructure of cognition-Vol. 1: Foundations. In Computational Models of Cognition and Perception (p. 1). Cambridge: MIT Press.Google Scholar
  59. Sent, E. M. (2004). Behavioral economics: How psychology made its (limited) way back into economics. History of Political Economy, 36(4), 735.CrossRefGoogle Scholar
  60. Simon, H. A. (1982). Models of bounded rationality.Google Scholar
  61. Simon, H. A. (1987). Behavioural economics. The new Palgrave: A dictionary of economics, 1, 221–225.Google Scholar
  62. Smolensky, P. (1995). On the proper treatment of connectionism. Connectionism: Debates on psychological explanation, 2, 28–89.Google Scholar
  63. SPSS-Inc. (2007). SPSS Statistics Base 17.0 User’s Guide. Chicago.Google Scholar
  64. Van Wezel, M. C., & Baets, W. R. J. (1995). Predicting market responses with a neural network: The case of fast moving consumer goods. Marketing Intelligence & Planning, 13(7), 23–30.CrossRefGoogle Scholar
  65. Watson, J. J., & Wright, K. (2000). Consumer ethnocentrism and attitudes toward domestic and foreign products. European Journal of Marketing, 34(9/10), 1149.CrossRefGoogle Scholar
  66. Wells, V. K., & Foxall, G. R. (2011). Special issue: Consumer behaviour analysis and services. Service Industries Journal, 31(15), 2507–2513.CrossRefGoogle Scholar
  67. Wells, V. K., Chang, S. W., Oliveira-Castro, J., & Pallister, J. (2010). Market segmentation from a behavioral perspective. Journal of Organizational Behavior Management, 30(2), 176–198.CrossRefGoogle Scholar
  68. West, P. M., Brockett, P. L., & Golden, L. L. (1997). A comparative analysis of neural networks and statistical methods for predicting consumer choice. Marketing Science, 16(4), 370.CrossRefGoogle Scholar
  69. Yan, J., Foxall, G. R., & Doyle, J. R. (2012). Patterns of reinforcement and the essential values of brands: i. Incorporation of utilitarian and informational reinforcement into the estimation of demand. The Psychological Record, 62(3), 361.CrossRefGoogle Scholar

Copyright information

© Association for Behavior Analysis International 2017

Authors and Affiliations

  • Max N. Greene
    • 1
    Email author
  • Peter H. Morgan
    • 1
  • Gordon R. Foxall
    • 1
  1. 1.Cardiff UniversityCardiffUK

Personalised recommendations