Advertisement

The Behavior Analyst

, Volume 39, Issue 2, pp 243–258 | Cite as

The Developmental Systems Approach and the Analysis of Behavior

  • David S. Moore
Original Article

Abstract

The developmental systems approach is a perspective that has been adopted by increasing numbers of developmental scientists since it emerged in the twentieth century. The overview presented in this paper makes clear that proponents of this approach and proponents of modern behavior analysis should be natural allies. Despite some distinctions between the two schools of thought, the essential ideas associated with each are compatible with the other; in particular, scientists in both camps work to analyze the provenance of behavior and recognize the central role that contextual factors play in behavioral expression.

Keywords

Developmental systems Nature-nurture Phylogeny fallacy Instincts 

Notes

Compliance with Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of interest

David S. Moore declares that he has no conflicts of interest.

References

  1. Alberts, J. R., & Ronca, A. E. (2012). The experience of being born: a natural context for learning to suckle. International Journal of Pediatrics, 2012, Article ID 129328. doi:  10.1155/2012/129328.
  2. Blumberg, M. S. (2005). Basic instinct: the genesis of behavior. New York: Thunder’s Mouth Press.Google Scholar
  3. Borghol, N., Suderman, M., McArdle, W., Racine, A., Hallett, M., Pembrey, M., et al. (2012). Associations with early-life socio-economic position in adult DNA methylation. International Journal of Epidemiology, 41, 62–74.PubMedCrossRefGoogle Scholar
  4. Burt, C. H., & Simons, R. L. (2014). Pulling back the curtain on heritability studies: biosocial criminology in the postgenomic era. Criminology, 52, 223–262.CrossRefGoogle Scholar
  5. Chaufan, C., & Joseph, J. (2013). The ‘missing heritability’ of common disorders: should health researchers care? International Journal of Health Services, 43, 281–303.PubMedCrossRefGoogle Scholar
  6. Cole, S. W., Hawkley, L. C., Arevalo, J. M., Sung, C. Y., Rose, R. M., & Cacioppo, J. T. (2007). Social regulation of gene expression in human leukocytes. Genome Biology, 8, R189.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Day, J. J., & Sweatt, J. D. (2010). DNA methylation and memory formation. Nature Neuroscience, 13, 1319–1323.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Day, J. J., & Sweatt, J. D. (2011). Epigenetic mechanisms in cognition. Neuron, 70, 813–829.PubMedPubMedCentralCrossRefGoogle Scholar
  9. DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: newborns prefer their mothers’ voices. Science, 208, 1174–1176.PubMedCrossRefGoogle Scholar
  10. DeCasper, A. J., & Spence, M. J. (1986). Prenatal maternal speech influences newborns’ perception of speech sounds. Infant Behavior and Development, 9, 133–150.CrossRefGoogle Scholar
  11. Devlin, A. M., Brain, U., Austin, J., & Oberlander, T. F. (2010). Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS ONE, 5(8), e12201. doi: 10.1371/journal.pone.0012201.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Ford, D. H., & Lerner, R. M. (1992). Developmental systems theory: an integrative approach. Thousand Oaks, CA: Sage.Google Scholar
  13. Galton, F. (1907). Inquiries into human faculty and its development. London/New York: J. M. Dent/E. P. Dutton (Originally published in 1883).CrossRefGoogle Scholar
  14. Gilbert, S. F. (1992). Synthesizing embryology and human genetics: paradigms regained. American Journal of Human Genetics, 51, 211–215.PubMedPubMedCentralGoogle Scholar
  15. Gilbert, S. F., & Sarkar, S. (2000). Embracing complexity: organicism for the 21st century. Developmental Dynamics, 219, 1–9.PubMedCrossRefGoogle Scholar
  16. Godfrey-Smith, P. (2001). On the status and explanatory structure of DST. In S. Oyama, P. E. Griffiths, & R. D. Gray (Eds.), Cycles of contingency: developmental systems and evolution (pp. 283–297). Cambridge, MA: MIT Press.Google Scholar
  17. Goldstein, M. H., King, A. P., & West, M. J. (2003). Social interaction shapes babbling: testing parallels between birdsong and speech. Proceedings of the National Academy of Sciences USA, 100, 8030–8035.CrossRefGoogle Scholar
  18. Gomez-Pinilla, F., Zhuang, Y., Feng, J., Ying, Z., & Fan, G. (2011). Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. European Journal of Neuroscience, 33, 383–390.PubMedCrossRefGoogle Scholar
  19. Gottlieb, G. (1991a). Experiential canalization of behavioral development: theory. Developmental Psychology, 27, 4–13.CrossRefGoogle Scholar
  20. Gottlieb, G. (1991b). Experiential canalization of behavioral development: results. Developmental Psychology, 27, 35–39.CrossRefGoogle Scholar
  21. Gottlieb, G. (1992). Individual development and evolution: the genesis of novel behavior. New York, NY: Oxford University Press.Google Scholar
  22. Gottlieb, G. (1997). Synthesizing nature-nurture: prenatal roots of instinctive behavior. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  23. Gottlieb, G. (1998). Normally occurring environmental and behavioral influences on gene activity: from central dogma to probabilistic epigenesis. Psychological Review, 105, 792–802.PubMedCrossRefGoogle Scholar
  24. Gottlieb, G. (2007). Probabilistic epigenesis. Developmental Science, 10, 1–11.PubMedCrossRefGoogle Scholar
  25. Griffiths, P. E., & Gray, R. D. (1994). Developmental systems and evolutionary explanation. The Journal of Philosophy, 91, 277–304.CrossRefGoogle Scholar
  26. Griffiths, P. E., & Gray, R. D. (2005). Discussion: three ways to misunderstand developmental systems theory. Biology & Philosophy, 20, 417–425.CrossRefGoogle Scholar
  27. Griffiths, P. E., & Stotz, K. (2006). Genes in the postgenomic era. Theoretical Medicine and Bioethics, 27, 499–521.PubMedCrossRefGoogle Scholar
  28. Griffiths, P. E., & Tabery, J. (2008). Behavioral genetics and development: historical and conceptual causes of controversy. New Ideas in Psychology, 26, 332–352.CrossRefGoogle Scholar
  29. Griffiths, P. E., & Tabery, J. (2013). Developmental systems theory: what does it explain, and how does it explain it? Advances in Child Development and Behavior, 44, 65–94.PubMedCrossRefGoogle Scholar
  30. Johnston, T. D. (1987). The persistence of dichotomies in the study of behavioral development. Developmental Review, 7, 149–182.CrossRefGoogle Scholar
  31. Johnston, T. D. (2010). Developmental systems theory. In M. S. Blumberg, J. H. Freeman, & S. R. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 12–29). New York: Oxford University Press.Google Scholar
  32. Johnston, T. D., & Gottlieb, G. (1990). Neophenogenesis: a developmental theory of phenotypic evolution. Journal of Theoretical Biology, 147, 471–495.PubMedCrossRefGoogle Scholar
  33. Johnston, T. D., & Lickliter, R. (2009). A developmental systems theory perspective on psychological change. In J. P. Spencer, M. S. C. Thomas, & J. L. McClelland (Eds.), Toward a unified theory of development: connectionism and dynamic systems theory re-considered (pp. 285–296). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  34. Joseph, J. (2015). The trouble with twin studies: a reassessment of twin research in the social and behavioral sciences. New York: Routledge.Google Scholar
  35. Kandel, E. R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science, 294, 1030–1038.PubMedCrossRefGoogle Scholar
  36. Keller, E. F. (2005). DDS: dynamics of developmental systems. Biology & Philosophy, 20, 409–416.CrossRefGoogle Scholar
  37. Keller, E. F. (2014). From gene action to reactive genomes. Journal of Physiology, 592, 2423–2429.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kelso, J. A. S. (2000). Principles of dynamic pattern formation and change for a science of human behavior. In L. R. Bergman, R. B. Cairns, L. Nilsson, & L. Nystedt (Eds.), Developmental science and the holistic approach (pp. 63–83). Mahwah, N.J.: Erlbaum.Google Scholar
  39. Kuo, Z. Y. (1967). The dynamics of behavior development: an epigenetic view. New York: Random House.Google Scholar
  40. Lehrman, D. S. (1953). A critique of Konrad Lorenz’s theory of instinctive behavior. The Quarterly Review of Biology, 28, 337–363.PubMedCrossRefGoogle Scholar
  41. Lester, B. M., Tronick, E., Nestler, E., Abel, T., Kosofsky, B., Kuzawa, C. W., et al. (2011). Behavioral epigenetics. Annals of the New York Academy of Sciences, 1226, 14–33.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Levenson, J. M., & Sweatt, J. D. (2005). Epigenetic mechanisms in memory formation. Nature Reviews Neuroscience, 6, 108–118.PubMedCrossRefGoogle Scholar
  43. Lewkowicz, D. J. (2011). The biological implausibility of the nature–nurture dichotomy and what it means for the study of infancy. Infancy, 16, 331–367.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lewontin, R. C. (2000). The triple helix: gene, organism, and environment. Cambridge, MA: Harvard University Press.Google Scholar
  45. Lickliter, R. (2009). The fallacy of partitioning: epigenetics’ validation of the organism-environment system. Ecological Psychology, 21, 138–146.CrossRefGoogle Scholar
  46. Lickliter, R. (2013). Biological development: theoretical approaches, techniques, and key findings. In P. D. Zelazo (Ed.), Oxford handbook of developmental psychology (pp. 65–90). New York: Oxford University Press.Google Scholar
  47. Lickliter, R., & Berry, T. D. (1990). The phylogeny fallacy: developmental psychology’s misapplication of evolutionary theory. Developmental Review, 10, 348–364.CrossRefGoogle Scholar
  48. Lickliter, R., & Honeycutt, H. (2015). Biology, development, and human systems. In R. M. Lerner (Ed.), Handbook of child psychology and developmental science (Theory and method, Vol. 1, pp. 162–207). New York: John Wiley.Google Scholar
  49. Lillycrop, K. A., Phillips, E. S., Jackson, A. A., Hanson, M. A., & Burdge, G. C. (2005). Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. Journal of Nutrition, 135, 1382–1386.PubMedGoogle Scholar
  50. Masataka, N. (1993). Effects of experience with live insects on the development of fear of snakes in squirrel monkeys, Saimiri sciureus. Animal Behaviour, 46, 741–746.CrossRefGoogle Scholar
  51. Maze, I., & Nestler, E. J. (2011). The epigenetic landscape of addiction. Annals of the New York Academy of Sciences, 1216, 99–113.PubMedPubMedCentralCrossRefGoogle Scholar
  52. McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonté, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342–348.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Meaney, M. J. (2010). Epigenetics and the biological definition of gene × environment interactions. Child Development, 81, 41–79.PubMedCrossRefGoogle Scholar
  54. Meaney, M. J., & Szyf, M. (2005). Maternal care as a model for experience-dependent chromatin plasticity? Trends in Neurosciences, 28, 456–463.PubMedCrossRefGoogle Scholar
  55. Michel, G. F., & Moore, C. L. (1995). Developmental psychobiology: an interdisciplinary science. Cambridge, MA: MIT.Google Scholar
  56. Midgley, B. D., & Morris, E. K. (1992). Nature = f(tnurture). A review of Oyama’s the ontogeny of information. Journal of the Experimental Analysis of Behavior, 58, 229–240.PubMedCentralCrossRefGoogle Scholar
  57. Moore, D. S. (2002). The dependent gene: the fallacy of nature vs. nurture. New York: W.H. Freeman.Google Scholar
  58. Moore, D. S. (2006). A very little bit of knowledge: re-evaluating the meaning of the heritability of IQ. Human Development, 49, 347–353.CrossRefGoogle Scholar
  59. Moore, D. S. (2008). Individuals and populations: how biology’s theory and data have interfered with the integration of development and evolution. New Ideas in Psychology, 26, 370–386.CrossRefGoogle Scholar
  60. Moore, D. S. (2009). Probing predispositions: the pragmatism of a process perspective. Child Development Perspectives, 3, 91–93.CrossRefGoogle Scholar
  61. Moore, D. S. (2013a). Behavioral genetics, genetics, & epigenetics. In P. D. Zelazo (Ed.), Oxford handbook of developmental psychology (pp. 91–128). New York: Oxford University Press.Google Scholar
  62. Moore, D. S. (2013b). Current thinking about nature and nurture. In K. Kampourakis (Ed.), The philosophy of biology: a companion for educators (pp. 629–652). New York: Springer.CrossRefGoogle Scholar
  63. Moore, D. S. (2015a). The asymmetrical bridge: book review of James Tabery’s “Beyond versus.”. Acta Biotheoretica, 63, 413–427. doi: 10.1007/s10441-015-9270-z.CrossRefGoogle Scholar
  64. Moore, D. S. (2015b). The developing genome: an introduction to behavioral epigenetics. New York: Oxford University Press.Google Scholar
  65. Moore, D. S., & Shenk, D. (2016). The heritability fallacy [Individual development & behavior collection]. WIREs Cognitive Science. doi: 10.1002/wcs.1400.Google Scholar
  66. Morris, E. K., Lazo, J. F., & Smith, N. G. (2004). Whether, when, and why Skinner published on biological participation in behavior. The Behavior Analyst, 27, 153–169.PubMedPubMedCentralGoogle Scholar
  67. Murgatroyd, C., Patchev, A. V., Wu, Y., Micale, V., Bockmühl, Y., Fischer, D., et al. (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neuroscience, 12, 1559–1566.PubMedCrossRefGoogle Scholar
  68. Nijhout, H. F. (1990). Metaphors and the role of genes in development. BioEssays, 12, 441–446.PubMedCrossRefGoogle Scholar
  69. Noble, D. (2006). The music of life: biology beyond genes. New York: Oxford University Press.Google Scholar
  70. Overton, W. F. (2006). Developmental psychology: philosophy, concepts, methodology. In R. Lerner (Ed.), Handbook of child psychology (Theoretical models of human development, Vol. 1, pp. 18–88). New York: John Wiley.Google Scholar
  71. Overton, W. F., & Lerner, R. M. (2012). Relational-developmental-systems: paradigm for developmental science in the postgenomic era. Brain and Behavioral Science, 35, 375–376.CrossRefGoogle Scholar
  72. Oyama, S. (1985). The ontogeny of information. Durham, NC: Duke University Press.Google Scholar
  73. Oyama, S., Griffiths, P. E., & Gray, R. D. (2001). Cycles of contingency: developmental systems and evolution. Cambridge, MA: MIT Press.Google Scholar
  74. Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2008). Behavioral genetics (5th ed.). New York: Worth.Google Scholar
  75. Pradeu, T. (2010). The organism in developmental systems theory. Biological Theory, 5, 216–222.CrossRefGoogle Scholar
  76. Pradeu, T. (2015). Toolbox murders: putting genes in their epigenetic and ecological contexts. Biology & Philosophy. doi: 10.1007/s10539-014-9471-x. Advance online publication.Google Scholar
  77. Provençal, N., Suderman, M. J., Guillemin, C., Massart, R., Ruggiero, A., Wang, D., et al. (2012). The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. Journal of Neuroscience, 32, 15626–15642.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Richardson, K., & Norgate, S. H. (2005). The equal environments assumption of classical twin studies may not hold. British Journal of Educational Psychology, 75, 339–350.PubMedCrossRefGoogle Scholar
  79. Roth, T. L., Lubin, F. D., Funk, A. J., & Sweatt, J. D. (2009). Lasting epigenetic influence of early-life adversity on the BDNF gene. Biological Psychiatry, 65, 760–769.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Schneider, S. M. (2003). Evolution, behavior principles, and developmental systems: a review of Gottlieb’s Synthesizing nature-nurture: prenatal roots of instinctive behavior. Journal of the Experimental Analysis of Behavior, 79, 137–152.PubMedCentralCrossRefGoogle Scholar
  81. Schneider, S. M. (2007). The tangled tale of genes and environment: Moore’s The dependent gene: the fallacy ofnature vs. nurture.”. The Behavior Analyst, 30, 91–105.PubMedCentralGoogle Scholar
  82. Schneider, S. M. (2012). The science of consequences: how they affect genes, change the brain, and impact our world. Amherst, NY: Prometheus Books.Google Scholar
  83. Schneirla, T. C. (1957). The concept of development in comparative psychology. In D. B. Harris (Ed.), The concept of development: an issue in the study of human behavior (pp. 78–108). Minneapolis, MN: University of Minnesota Press.Google Scholar
  84. Shultziner, D. (2013a). Genes and politics: a new explanation and evaluation of twin study results and association studies in political science. Political Analysis, 21, 350–367.CrossRefGoogle Scholar
  85. Shultziner, D. (2013b). Fatal flaws in the twin study paradigm: a reply to Hatemi and Verhulst. Political Analysis, 21, 390–392.CrossRefGoogle Scholar
  86. Sinclair, K. D., Allegrucci, C., Singh, R., Gardner, D. S., Sebastian, S., Bispham, J., et al. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proceedings of the National Academy of Sciences USA, 104, 19351–19356.CrossRefGoogle Scholar
  87. Skinner, B. F. (1980). In response: the species-specific behavior of ethologists. The Behavior Analyst, 3, 51.PubMedPubMedCentralGoogle Scholar
  88. Spencer, J. P., Blumberg, M. S., McMurray, B., Robinson, S. R., Samuelson, L. K., & Tomblin, J. B. (2009). Short arms and talking eggs: why we should no longer abide the nativist–empiricist debate. Child Development Perspectives, 3, 79–87.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Stewart, I. (1989). Does god play dice? The mathematics of chaos. Cambridge: Basil Blackwell.Google Scholar
  90. Stotz, K. (2006). With ‘genes’ like that, who needs an environment? Postgenomics’s argument for the “ontogeny of information,”. Philosophy of Science, 73, 905–917.CrossRefGoogle Scholar
  91. Stotz, K. (2012). Murder on the development express: who killed nature/nurture? Biology & Philosophy, 27, 919–929.CrossRefGoogle Scholar
  92. Szyf, M., & Bick, J. (2013). DNA methylation: a mechanism for embedding early life experiences in the genome. Child Development, 84, 49–57.PubMedCrossRefGoogle Scholar
  93. Tabery, J. (2014). Beyond versus: the struggle to understand the interaction of nature and nurture. Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
  94. Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. Cambridge, MA: MIT Press.Google Scholar
  95. Todd, J. T. (1987). The great power of steady misrepresentation: behaviorism’s presumed denial of instinct. The Behavior Analyst, 10, 117–118.PubMedPubMedCentralGoogle Scholar
  96. Van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., & Ebstein, R. P. (2011). Methylation matters in child development: toward developmental behavioral epigenetics. Child Development Perspectives, 5, 305–310.CrossRefGoogle Scholar
  97. Wallman, J. (1979). A minimal visual restriction experiment: preventing chicks from seeing their feet affects later responses to mealworms. Developmental Psychobiology, 12, 391–397.PubMedCrossRefGoogle Scholar
  98. Weaver, I. C. G. (2007). Epigenetic programming by maternal behavior and pharmacological intervention: nature versus nurture: let’s call the whole thing off. Epigenetics, 2, 22–28.PubMedCrossRefGoogle Scholar
  99. Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847–854.PubMedCrossRefGoogle Scholar
  100. Weaver, I. C. G., Meaney, M. J., & Szyf, M. (2006). Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proceedings of the National Academy of Sciences USA, 103, 3480–3485.CrossRefGoogle Scholar
  101. Wereha, T. J., & Racine, T. P. (2012). Evolution, development, and human social cognition. Review of Philosophy and Psychology, 3, 559–579.CrossRefGoogle Scholar
  102. West, M. J., & King, A. P. (1987). Settling nature and nurture into an ontogenetic niche. Developmental Psychobiology, 20, 549–562.PubMedCrossRefGoogle Scholar
  103. Witherington, D. C., & Lickliter, R. (2016). Integrating development and evolution in psychological science: evolutionary developmental psychology, developmental systems, and explanatory pluralism. Manuscript submitted for publication.Google Scholar
  104. Zhang, T.-Y., & Meaney, M. J. (2010). Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology, 61, 439–466.PubMedCrossRefGoogle Scholar

Copyright information

© Association for Behavior Analysis International 2016

Authors and Affiliations

  1. 1.Pitzer CollegeClaremontUSA
  2. 2.Claremont Graduate UniversityClaremontUSA

Personalised recommendations