Current Molecular Biology Reports

, Volume 5, Issue 1, pp 26–33 | Cite as

Molecular Control of Growth-Related Sodium-Phosphate Co-transporter (SLC34A3)

  • Hiroko SegawaEmail author
  • Ichiro Kaneko
  • Yuji Shiozaki
  • Mikiko Ito
  • Sawako Tatsumi
  • Ken-Ichi MiyamotoEmail author
Molecular Control of Phosphorus Homeostasis (B van der Eerden, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Molecular Control of Phosphorus Homeostasis


The type IIa sodium-dependent inorganic phosphate transporter (NaPi-IIa) has a central regulatory role in inorganic phosphate (Pi) homeostasis. Many studies have reported on the functions and regulatory mechanisms of NaPi-IIa. NaPi-IIc, however, was initially identified as a NaPi transporter required for growth in rodents. The gene encoding NaPi-IIc is causative for hereditary hypophosphatemic rickets with hypercalciuria and considered to be a critical NaPi transporter in the human kidney. However, the physiological roles and regulatory mechanisms of NaPi-IIc are not sufficiently elucidated. Recent studies show that NaPi-IIc is tightly regulated by a variety of agonists and physiological conditions via partially defined molecular mechanisms, including transcriptional and posttranscriptional regulation, protein phosphorylation, trafficking (endocytosis, exocytosis, and recycling), and the association of NaPi-IIc with interacting protein complexes. These data provide further information about understanding of human renal Pi handling. Here, we review recent findings regarding the molecular control of NaPi-IIc transporters.


Phosphate Proximal tubules Brush border membrane Transporters Trafficking Human Rodents 


Funding information

This study was funded in part by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 23689045 to H. Segawa, No. 26293204 to K. Miyamoto), and the Salt Science Research Foundation (No. 1322 to K. Miyamoto).

Compliance with Ethical Standards

Conflict of Interest

Hiroko Segawa, Ichiro Kaneko, Yuji Shiozaki, Mikiko Ito, Sawako Tatsumi, and Ken-Ichi Miyamoto each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article contains no studies with human and animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Spitzer A, Barac-Nieto M. Ontogeny of renal phosphate transport and the process of growth. Pediatr Nephrol. 2001;16:763–71.CrossRefGoogle Scholar
  2. 2.
    Murer H, Hernando N, Forster I, Biber J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev. 2000;80:1373–409.CrossRefGoogle Scholar
  3. 3.
    Silverstein DM, Barac-Nieto M, Murer H, Spitzer A. A putative growth-related renal Na(+)-Pi cotransporter. Am J Physiol. 1997;273:R928–33.CrossRefGoogle Scholar
  4. 4.
    Tatsumi S, Miyagawa A, Kaneko I, Shiozaki Y, Segawa H, Miyamoto K. Regulation of renal phosphate handling: inter-organ communication in health and disease. J Bone Miner Metab. 2016;34:1–10.CrossRefGoogle Scholar
  5. 5.
    Wagner CA, Rubio-Aliaga I, Hernando N. Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Pediatr Nephrol. 2017.
  6. 6.
    Lederer E. Regulation of serum phosphate. J Physiol. 2014;592:3985–95.CrossRefGoogle Scholar
  7. 7.
    Wagner CA, Hernando N, Forster IC, Biber J. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch Eur J Physiol. 2014;466:139–53.CrossRefGoogle Scholar
  8. 8.
    Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch Eur J Physiol. 2019;471:149–163.Google Scholar
  9. 9.
    Carpenter TO. The expanding family of hypophosphatemic syndromes. J Bone Miner Metab. 2012;30:1–9.CrossRefGoogle Scholar
  10. 10.
    Santos F, Fuente R, Mejia N, Mantecon L, Gil-Pena H, Ordonez FA. Hypophosphatemia and growth. Pediatr Nephrol. 2013;28:595–603.CrossRefGoogle Scholar
  11. 11.
    Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78:179–92.CrossRefGoogle Scholar
  12. 12.
    Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78:193–201.CrossRefGoogle Scholar
  13. 13.
    •• Forster IC. The molecular mechanism of SLC34 proteins: insights from two decades of transport assays and structure-function studies. Pflugers Arch Eur J Physiol. 2018;471:15–42 This review provides key information in regarding to the transport mechanism of SLC34 proteins at the molecular level. CrossRefGoogle Scholar
  14. 14.
    Fenollar-Ferrer C, Forrest LR. Structural models of the NaPi-II sodium-phosphate cotransporters. Arch Eur J Physiol. 2018;471:43–52.CrossRefGoogle Scholar
  15. 15.
    Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A. 1998;95:5372–7.CrossRefGoogle Scholar
  16. 16.
    Ohkido I, Segawa H, Yanagida R, Nakamura M, Miyamoto K. Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney. Pflugers Arch Eur J Physiol. 2003;446:106–15.CrossRefGoogle Scholar
  17. 17.
    Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, et al. Growth-related renal type II Na/Pi cotransporter. J Biol Chem. 2002;277:19665–72.CrossRefGoogle Scholar
  18. 18.
    Kuwahara S, Aranami F, Segawa H, Onitsuka A, Honda N, Tominaga R, et al. Identification and functional analysis of a splice variant of mouse sodium-dependent phosphate transporter Npt2c. J Med Invest : JMI. 2012;59:116–26.CrossRefGoogle Scholar
  19. 19.
    Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, et al. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Ren Physiol. 2007;292:F769–79.CrossRefGoogle Scholar
  20. 20.
    Barthel TK, Mathern DR, Whitfield GK, Haussler CA, Hopper HA, Hsieh JC, et al. 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol. 2007;103:381–8.CrossRefGoogle Scholar
  21. 21.
    Masuda M, Yamamoto H, Kozai M, Tanaka S, Ishiguro M, Takei Y, et al. Regulation of renal sodium-dependent phosphate co-transporter genes (Npt2a and Npt2c) by all-trans-retinoic acid and its receptors. Biochem J. 2010;429:583–92.CrossRefGoogle Scholar
  22. 22.
    Kido S, Kaneko I, Tatsumi S, Segawa H, Miyamoto K. Vitamin D and type II sodium-dependent phosphate cotransporters. Contrib Nephrol. 2013;180:86–97.CrossRefGoogle Scholar
  23. 23.
    Kido S, Miyamoto K, Mizobuchi H, Taketani Y, Ohkido I, Ogawa N, et al. Identification of regulatory sequences and binding proteins in the type II sodium/phosphate cotransporter NPT2 gene responsive to dietary phosphate. J Biol Chem. 1999;274:28256–63.CrossRefGoogle Scholar
  24. 24.
    Gutierrez OM, Smith KT, Barchi-Chung A, Patel NM, Isakova T, Wolf M. (1-34) Parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol : CJASN. 2012;7:139–45.CrossRefGoogle Scholar
  25. 25.
    Segawa H, Yamanaka S, Onitsuka A, Tomoe Y, Kuwahata M, Ito M, et al. Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am J Physiol Ren Physiol. 2007;292:F395–403.CrossRefGoogle Scholar
  26. 26.
    Haito-Sugino S, Ito M, Ohi A, Shiozaki Y, Kangawa N, Nishiyama T, et al. Processing and stability of type IIc sodium-dependent phosphate cotransporter mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria. Am J Physiol Cell Physiol. 2012;302:C1316–30.CrossRefGoogle Scholar
  27. 27.
    Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, et al. Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Ren Physiol. 2005;288:F587–96.CrossRefGoogle Scholar
  28. 28.
    Lanzano L, Lei T, Okamura K, Giral H, Caldas Y, Masihzadeh O, et al. Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone. Am J Physiol Cell Physiol. 2011;301:C850–61.CrossRefGoogle Scholar
  29. 29.
    Fujii T, Shiozaki Y, Segawa H, Nishiguchi S, Ito M, Kaneko I et al. Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney. Clin Exp Nephrol. 2018.
  30. 30.
    Shiozaki Y, Segawa H, Ohnishi S, Ohi A, Ito M, Kaneko I, et al. Relationship between sodium-dependent phosphate transporter (NaPi-IIc) function and cellular vacuole formation in opossum kidney cells. J Med Invest : JMI. 2015;62:209–18.CrossRefGoogle Scholar
  31. 31.
    Villa-Bellosta R, Barac-Nieto M, Breusegem SY, Barry NP, Levi M, Sorribas V. Interactions of the growth-related, type IIc renal sodium/phosphate cotransporter with PDZ proteins. Kidney Int. 2008;73:456–64.CrossRefGoogle Scholar
  32. 32.
    Giral H, Lanzano L, Caldas Y, Blaine J, Verlander JW, Lei T, et al. Role of PDZK1 protein in apical membrane expression of renal sodium-coupled phosphate transporters. J Biol Chem. 2011;286:15032–42.CrossRefGoogle Scholar
  33. 33.
    Tieder M, Modai D, Shaked U, Samuel R, Arie R, Halabe A, et al. “Idiopathic” hypercalciuria and hereditary hypophosphatemic rickets. Two phenotypical expressions of a common genetic defect. N Engl J Med. 1987;316:125–9.CrossRefGoogle Scholar
  34. 34.
    Jones A, Tzenova J, Frappier D, Crumley M, Roslin N, Kos C, et al. Hereditary hypophosphatemic rickets with hypercalciuria is not caused by mutations in the Na/Pi cotransporter NPT2 gene. J Am Soc Nephrol : JASN. 2001;12:507–14.PubMedGoogle Scholar
  35. 35.
    Jaureguiberry G, Carpenter TO, Forman S, Juppner H, Bergwitz C. A novel missense mutation in SLC34A3 that causes hereditary hypophosphatemic rickets with hypercalciuria in humans identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc. Am J Physiol Ren Physiol. 2008;295:F371–9.CrossRefGoogle Scholar
  36. 36.
    Yamamoto T, Michigami T, Aranami F, Segawa H, Yoh K, Nakajima S, et al. Hereditary hypophosphatemic rickets with hypercalciuria: a study for the phosphate transporter gene type IIc and osteoblastic function. J Bone Miner Metab. 2007;25:407–13.CrossRefGoogle Scholar
  37. 37.
    Lightwood R, Stapleton T. Idiopathic hypercalcaemia in infants. Lancet. 1953;265:255–6.CrossRefGoogle Scholar
  38. 38.
    •• Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, et al. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol : JASN. 2016;27:604–14 The human and mice data together demonstrate that primary renal phosphate wasting caused by defective NaPi-IIa function induces inappropriate production of 1,25-(OH)2D3 with subsequent symptomatic hypercalcemia. CrossRefGoogle Scholar
  39. 39.
    Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, et al. Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol : JASN. 2009;20:104–13.CrossRefGoogle Scholar
  40. 40.
    Myakala K, Motta S, Murer H, Wagner CA, Koesters R, Biber J, et al. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. Am J Physiol Ren Physiol. 2014;306:F833–43.CrossRefGoogle Scholar
  41. 41.
    Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, et al. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Ren Physiol. 2009;297:F671–8.CrossRefGoogle Scholar
  42. 42.
    Miyamoto K, Haito-Sugino S, Kuwahara S, Ohi A, Nomura K, Ito M, et al. Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci. 2011;100:3719–30.CrossRefGoogle Scholar
  43. 43.
    Wagner CA, Biber J, Murer H. Of men and mice: who is in control of renal phosphate reabsorption? J Am Soc Nephrol : JASN. 2008;19:1625–6.CrossRefGoogle Scholar
  44. 44.
    Kuro-o M. A potential link between phosphate and aging—lessons from klotho-deficient mice. Mech Ageing Dev. 2010;131:270–5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Molecular NutritionUniversity of Tokushima Graduate SchoolTokushimaJapan
  2. 2.Department of Molecular Nutrition, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushima CityJapan
  3. 3.Human Science and EnvironmentUniversity of Hyogo Graduate SchoolHyogoJapan

Personalised recommendations