Advertisement

Extracellular Vesicles: How to Shuttle the Metastatic Programme

  • Alfredo CapparielloEmail author
  • Nadia Rucci
Molecular Biology of Bone Metastasis (H Taipaleenmäki and M Capulli, Section Editors)
  • 6 Downloads
Part of the following topical collections:
  1. Topical Collection on Molecular Biology of Bone Metastasis

Abstract

Purpose of Review

This review has the meaning of providing a state-of-the-art in the role of tumour-derived EVs in educating the host microenvironment during the metastatic process.

Recent Findings

Extracellular vesicles (EVs) now represent another piece in the complex puzzle that is tumorigenesis and metastasis. The indication that EVs are more than just a way for cells to dispose of waste and actually work as active and dynamic structures packaging molecular signals arose in the late ‘60s, when EV-like structures were involved in the function of coagulation. Since then, a huge amount of information has been collected, and we are now aware that EVs are crucially involved in paracrine and distant cell-cell communication under physiologic and pathologic conditions, such as cancer metastasis to bone.

Summary

We will focus on the EV-mediated mechanisms regulating bone homeostasis, and we will describe the way these mechanisms are dysregulated by osteotropic cancer cell-derived EVs.

Keywords

Tumour Extracellular vesicles Metastasis Bone 

Notes

Funding Information

This review was supported by the grant Ricerca Finalizzata #RF-2013-02357539 Id.E13C17000100005 of the “Ministero della Salute e della Ricerca Scientifica” for salary to AC and the grant # IG 2015 Id.16826 of the “Associazione Italiana per la Ricerca sul Cancro” to NR.

Compliance with Ethical Standards

Conflict of Interest

Alfredo Cappariello reports grants from the Italian Ministry of Health. Dr. Cappariello has a patent pending (10201500024334). Ndia Rucci reports grants from the Italian Association for Cancer Research.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30(August):255–89.Google Scholar
  2. 2.
    Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(Pt 24):5553–65.Google Scholar
  3. 3.
    Bobrie A, Théry C. Unraveling the physiological functions of exosome secretion by tumors. Oncoimmunology. 2013;2(1):e22565.Google Scholar
  4. 4.
    Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123(Pt 10):1603–11.Google Scholar
  5. 5.
    Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.Google Scholar
  6. 6.
    Simons M, Raposo G. Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol. Aug. 2009;21(4):575–81.Google Scholar
  7. 7.
    Katzmann DJ, Babst M, Emr SD. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell. 2001;106(2):145–55.Google Scholar
  8. 8.
    Reggiori F, Pelham HRB. Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J. 2001;20(18):5176–86.Google Scholar
  9. 9.
    Blott EJ, Griffiths GM. Secretory lysosomes. Nat. Rev. Mol. Cell Biol. Feb. 2002;3(2):122–31.Google Scholar
  10. 10.
    Hsu C, Morohashi Y, Yoshimura SI, Manrique-Hoyos N, Jung SY, Lauterbach MA, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A–C. J Cell Biol. 2010;189(2):223–32.Google Scholar
  11. 11.
    Pfeffer SR. Two Rabs for exosome release. Nat Cell Biol. 2010;12(1):3–4.Google Scholar
  12. 12.
    Yang J, et al. High expression of small GTPase Rab3D promotes cancer progression and metastasis. Oncotarget. 2015;6(13):11125–38.Google Scholar
  13. 13.
    Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, de Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284(49):34211–22.Google Scholar
  14. 14.
    Schöneberg J, Lee I-H, Iwasa JH, Hurley JH. Reverse-topology membrane scission by the ESCRT proteins. Nat Rev Mol Cell Biol. 2017;18(1):5–17.Google Scholar
  15. 15.
    Bevers EM, Comfurius P, Dekkers DW, Zwaal RF. Lipid translocation across the plasma membrane of mammalian cells. Biochim Biophys Acta. 1999;1439(3):317–30.Google Scholar
  16. 16.
    Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 2009;19(22):1875–85.Google Scholar
  17. 17.
    Leventis PA, Grinstein S. The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys. 2010;39(1):407–27.Google Scholar
  18. 18.
    D’Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev. 2012;26(12):1287–99.Google Scholar
  19. 19.
    Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. May 1967;13(3):269–88.Google Scholar
  20. 20.
    Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985;101(3):942–8.Google Scholar
  21. 21.
    De Rubis G, Rajeev Krishnan S, Bebawy M. Liquid biopsies in Cancer diagnosis, monitoring, and prognosis. Trends Pharmacol Sci. ​2019;40(3):172–86Google Scholar
  22. 22.
    Théry C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep. 2011;3:15.Google Scholar
  23. 23.
    Dolo V, Ginestra A, Cassara D, Ghersi G, Nagase H, Vittorelli ML. Shed membrane vesicles and selective localization of gelatinases and MMP-9/TIMP-1 complexes. Ann N Y Acad Sci. 1999;878(1 INHIBITION OF):497–9.Google Scholar
  24. 24.
    Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.Google Scholar
  25. 25.
    Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y, et al. Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol. 2006;176(3):1375–85.Google Scholar
  26. 26.
    Clayton A, Turkes A, Dewitt S, Steadman R, Mason M d, Hallett M b. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 2004;18(9):977–9.Google Scholar
  27. 27.
    Hood J, San R, Wickline S. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 2011;71:3792–801.Google Scholar
  28. 28.
    Taraboletti G, D’Ascenzoy S, Giusti I, Marchetti D. Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia. 2006;8:96–103.Google Scholar
  29. 29.
    Kim H, Lee YD, Kim MK, Kwon JO, Song MK, Lee ZH, et al. Extracellular S100A4 negatively regulates osteoblast function by activating the NF-κB pathway. BMB Rep. Feb. 2017;50(2):97–102.Google Scholar
  30. 30.
    Graves L, Ariztia E, Navari J, Matzel H, Stack M. Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res. 2004;64:7045–9.Google Scholar
  31. 31.
    Castellana D, Zobairi F, Martinez M, Panaro M. Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1-CX3CR1 axis. Cancer Res. 2009;69:785–93.Google Scholar
  32. 32.
    Wysoczynski M, Ratajczak MZ. Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer. 2009;125(7):1595–603.Google Scholar
  33. 33.
    Webber J, Steadman R, Mason M, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70:9621–30.Google Scholar
  34. 34.
    Lee K, Park H, Lim EH, Lee KW. Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol. 2011;40(1):130–8.Google Scholar
  35. 35.
    Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL, et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci. 2011;108(12):4852–7.Google Scholar
  36. 36.
    Singh R, Pochampally R, Watabe K, Lu Z, Mo Y-Y. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol Cancer. 2014;13(1):256.Google Scholar
  37. 37.
    Campos A, Salomon C, Bustos R, Díaz J, Martínez S, Silva V, et al. Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines. Nanomedicine. 2018;13(20):2597–609.Google Scholar
  38. 38.
    Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. Sep. 2011;10(9):1533–41.Google Scholar
  39. 39.
    Dutta S, Warshall C, Bandyopadhyay C, Dutta D, Chandran B. Interactions between exosomes from breast cancer cells and primary mammary epithelial cells leads to generation of reactive oxygen species which induce DNA damage response, stabilization of p53 and autophagy in epithelial cells. PLoS One. 2014;9(5):e97580.Google Scholar
  40. 40.
    Garimella R, Washington L, Isaacson J, Vallejo J, Spence M, Tawfik O, et al. Extracellular membrane vesicles derived from 143B osteosarcoma cells contain pro-osteoclastogenic cargo: a novel communication mechanism in osteosarcoma bone microenvironment. Transl Oncol. 2014;7(3):331–40.Google Scholar
  41. 41.
    Robinson-Smith TM, Isaacsohn I, Mercer CA, Zhou M, van Rooijen N, Husseinzadeh N, et al. Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res. 2007;67(12):5708–16.Google Scholar
  42. 42.
    Osaki M, Takeshita F, Sugimoto Y. MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Mol Ther. 2011;19:1123–30.Google Scholar
  43. 43.
    Uchibori M, Nishida Y, et al. Increased expression of membrane-type matrix metalloproteinase-1 is correlated with poor prognosis in patients with osteosarcoma. Int J Oncol. 2006;28(1):33–42.Google Scholar
  44. 44.
    Bjørnland K, Flatmark K, Pettersen S, Aaasen AO, Fodstad Ø, Mælandsmo GM. Matrix metalloproteinases participate in osteosarcoma invasion. J Surg Res. 2005;127(2):151–6.Google Scholar
  45. 45.
    Ferrari C, Benassi M, Ponticelli F, Gamberi G, Ragazzini P, Pazzaglia L, et al. Role of MMP-9 and its tissue inhibitor TIMP-1 in human osteosarcoma. Findings in 42 patients followed for 1–16 years. Acta Orthop Scand. 2004;75(4):487–91.Google Scholar
  46. 46.
    Cappariello A, Maurizi A, Veeriah V, Teti A. Reprint of: the great beauty of the osteoclast. Arch Biochem Biophys. 2014;561:13–21.Google Scholar
  47. 47.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.Google Scholar
  48. 48.
    Peinado H, Alečković M, Lavotshkin S, Matei I. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature. 2012;18(6):883-91.Google Scholar
  49. 49.
    Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501–15.Google Scholar
  50. 50.
    Feng Q, Zhang C, Lum D, Druso JE, Blank B, Wilson KF, et al. A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis. Nat Commun. 2017;8:14450.Google Scholar
  51. 51.
    Lu H. Inflammation, a key event in cancer development. Mol Cancer Res. Apr. 2006;4(4):221–33.Google Scholar
  52. 52.
    Chow A, Zhou W, Liu L, Fong MY, Champer J, van Haute D, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB. Sci Rep. 2015;4(1):5750.Google Scholar
  53. 53.
    Menck K, Klemm F, Gross JC, Pukrop T, Wenzel D, Binder C. Induction and transport of Wnt 5a during macrophage-induced malignant invasion is mediated by two types of extracellular vesicles. Oncotarget. 2013;4(11):2057–66Google Scholar
  54. 54.
    Beck WT, Danks MK, Cirtain MC, van Heiningen JN. Cross-resistance patterns and antigen expression in Vinca alkaloid- and other multiple drug-resistant human leukemic cell lines. Prog Clin Biol Res. 1986;223:3–10.Google Scholar
  55. 55.
    Chen W, Cai YQ, Lv MM, Chen L, Zhong SL, Ma TF, et al. Exosomes from docetaxel-resistant breast cancer cells alter chemosensitivity by delivering microRNAs. Tumor Biol. 2014;35(10):9649–59.Google Scholar
  56. 56.
    Yang S, Wang DD, Li J, Xu HZ, Shen HY, Chen X, et al. Predictive role of GSTP1-containing exosomes in chemotherapy-resistant breast cancer. Gene. 2017;623:5–14.Google Scholar
  57. 57.
    K. U. Douglas et al., “The human multidrug resistance (mdrl ) gene cDNA cloning and transcription initiation,” 1987.Google Scholar
  58. 58.
    Efferth T, Volm M. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers. Arch Toxicol. 2017;91(7):2515–38.Google Scholar
  59. 59.
    Levchenko A, Mehta BM, Niu X, Kang G, Villafania L, Way D, et al. Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc Natl Acad Sci. 2005;102:1933–8.Google Scholar
  60. 60.
    Ma X, Cai Y, He D, Zou C, Zhang P, Lo CY, et al. Transient receptor potential channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells. Proc Natl Acad Sci U S A. 2012;109(40):16282–7.Google Scholar
  61. 61.
    Bonucci E. Fine structure of early cartilage calcification. J Ultrastruct Res. 1967;20(1–2):33–50.Google Scholar
  62. 62.
    Cappariello A, Loftus A, Muraca M, Maurizi A, Rucci N, Teti A. Osteoblast-derived extracellular vesicles are biological tools for the delivery of active molecules to bone. J Bone Miner Res. 2018;33(3):517–33.Google Scholar
  63. 63.
    Cui Y, Luan J, Li H, Zhou X, Han J. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett. 2016;590(1):185–92.Google Scholar
  64. 64.
    Ge M, Ke R, Cai T, Yang J, Mu X. Identification and proteomic analysis of osteoblast-derived exosomes. Biochem Biophys Res Commun. 2015;467(1):27–32.Google Scholar
  65. 65.
    Morhayim J, van de Peppel J, Demmers JAA, Kocer G, Nigg AL, van Driel M, et al. Proteomic signatures of extracellular vesicles secreted by nonmineralizing and mineralizing human osteoblasts and stimulation of tumor cell growth. FASEB J. 2015;29(1):274–85.Google Scholar
  66. 66.
    Morhayim J, van de Peppel J, Dudakovic A, Chiba H, van Wijnen AJ, van Leeuwen JP. Molecular characterization of human osteoblast-derived extracellular vesicle mRNA using next-generation sequencing. Biochim Biophys Acta—Mol Cell Res. 2017;1864(7):1133–41.Google Scholar
  67. 67.
    Nahar NN, Missana LR, Garimella R, Tague SE, Anderson HC. Matrix vesicles are carriers of bone morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF), and noncollagenous matrix proteins. J Bone Miner Metab. 2008;26(5):514–9.Google Scholar
  68. 68.
    Deng L, Wang Y, Peng Y, Wu Y, Ding Y, Jiang Y, et al. Osteoblast-derived microvesicles: a novel mechanism for communication between osteoblasts and osteoclasts. Bone. 2015;79:37–42.Google Scholar
  69. 69.
    Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.Google Scholar
  70. 70.
    Morrell AE, Brown GN, Robinson ST, Sattler RL, Baik AD, Zhen G, et al. Mechanically induced Ca2+ oscillations in osteocytes release extracellular vesicles and enhance bone formation. Bone Res. 2018;6(1):6.Google Scholar
  71. 71.
    Sato M, Suzuki T, Kawano M, Tamura M. Circulating osteocyte-derived exosomes contain miRNAs which are enriched in exosomes from MLO-Y4 cells. Biomed Rep. 2017;6(2):223–31.Google Scholar
  72. 72.
    Qin Y, Peng Y, Zhao W, Pan J, Ksiezak-Reding H, Cardozo C, et al. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: a novel mechanism in muscle-bone communication. J Biol Chem. 2017;292(26):11021–33.Google Scholar
  73. 73.
    Ekström K, Omar O, Granéli C, Wang X, Vazirisani F, Thomsen P. Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells. PLoS One. 2013;8(9):e75227.Google Scholar
  74. 74.
    Li D, Liu J, Guo B, Liang C, Dang L, Lu C, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun. 2016;7(1):10872.Google Scholar
  75. 75.
    Huynh N, VonMoss L, Smith D, Rahman I, Felemban MF, Zuo J, et al. Characterization of regulatory extracellular vesicles from osteoclasts. J Dent Res. 2016;95(6):673–9.Google Scholar
  76. 76.
    Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561(7722):195–200.Google Scholar
  77. 77.
    Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 2012;315(1):28–37.Google Scholar
  78. 78.
    Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27(3):165–76.Google Scholar
  79. 79.
    Woodward E, Jagdev S, McParland L, Clark K, Gregory W, Newsham A, et al. Skeletal complications and survival in renal cancer patients with bone metastases. Bone. 2011;48(1):160–6.Google Scholar
  80. 80.
    Coleman R. Bone targeted treatments in cancer—the story so far. J Bone Oncol. 2016;5(3):90–2.Google Scholar
  81. 81.
    Koeneman KS, Yeung F, Chung LW. Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate. 1999;39(4):246–61.Google Scholar
  82. 82.
    Rucci N, Teti A. Osteomimicry: how the seed grows in the soil. Calcif Tissue Int. 2018;102(2):131–40.Google Scholar
  83. 83.
    Clines GA, Guise TA. Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone. Endocr Relat Cancer. 2005;12(3):549–83.Google Scholar
  84. 84.
    Renzulli JF, del Tatto M, Dooner G, Aliotta J, Goldstein L, Dooner M, et al. Microvesicle induction of prostate specific gene expression in normal human bone marrow cells. J Urol. 2010;184(5):2165–71.Google Scholar
  85. 85.
    Fabiani R, Johansson L, Lundkvist O, Ronquist G. Enhanced recruitment of motile spermatozoa by prostasome inclusion in swim-up medium. Hum Reprod. 1994;9(8):1485–9.Google Scholar
  86. 86.
    Skibinski G, Kelly RW, Harkiss D, James K. Immunosuppression by human seminal plasma—extracellular organelles (prostasomes) modulate activity of phagocytic cells. Am J Reprod Immunol. 1992;28(2):97–103.Google Scholar
  87. 87.
    Carlsson L, Påhlson C, Bergquist M, Ronquist G, Stridsberg M. Antibacterial activity of human prostasomes. Prostate. 2000;44(4):279–86.Google Scholar
  88. 88.
    Tavoosidana G, et al. Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer. Proc Natl Acad Sci. 2011;108(21):8809–14.Google Scholar
  89. 89.
    Kim D-K, Lee J, Kim SR, Choi DS, Yoon YJ, Kim JH, et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics. 2015;31(6):933–9.Google Scholar
  90. 90.
    Ronquist KG, Ronquist G, Larsson A, Carlsson L. Proteomic analysis of prostate cancer metastasis-derived prostasomes. Anticancer Res. Feb. 2010;30(2):285–90.Google Scholar
  91. 91.
    Ye Y, et al. Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget. 2017;8(55):94834–49.Google Scholar
  92. 92.
    Hashimoto K, Ochi H, Sunamura S, Kosaka N, Mabuchi Y, Fukuda T, et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci. 2018;115(9):2204–9.Google Scholar
  93. 93.
    Inder KL, Ruelcke JE, Petelin L, Moon H, Choi E, Rae J, et al. Cavin-1/PTRF alters prostate cancer cell-derived extracellular vesicle content and internalization to attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation. J Extracell Vesicles. 2014;3(1):23784.Google Scholar
  94. 94.
    Karlsson T, Lundholm M, Widmark A, Persson E. Tumor cell-derived exosomes from the prostate cancer cell line TRAMP-C1 impair osteoclast formation and differentiation. PLoS One. 2016;11(11):e0166284.Google Scholar
  95. 95.
    Margheri F, D'Alessio S, Serratí S, Pucci M, Annunziato F, Cosmi L, et al. Effects of blocking urokinase receptor signaling by antisense oligonucleotides in a mouse model of experimental prostate cancer bone metastases. Gene Ther. 2005;12(8):702–14.Google Scholar
  96. 96.
    Angelucci A, et al. Evaluation of metastatic potential in prostate carcinoma: an in vivo model. Int J Oncol. 2004;25(6):1713–20.Google Scholar
  97. 97.
    Gingrich JR, et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res. 1996;56(18):4096–102.Google Scholar
  98. 98.
    Wang J, Hendrix A, Hernot S, Lemaire M, de Bruyne E, van Valckenborgh E, et al. Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood. 2014;124(4):555–66.Google Scholar
  99. 99.
    Raimondi L, et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget. 2015;6(15):13772–89.Google Scholar
  100. 100.
    Bliss SA, Sinha G, Sandiford OA, Williams LM, Engelberth DJ, Guiro K, et al. Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res. 2016;76(19):5832–44.Google Scholar
  101. 101.
    Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. 2014;7(332):ra63.Google Scholar
  102. 102.
    Miller RE, Jones JC, Tometsko M, Blake ML, Dougall WC. RANKL inhibition blocks osteolytic lesions and reduces skeletal tumor burden in models of non–small-cell lung cancer bone metastases. J Thorac Oncol. 2014;9(3):345–54.Google Scholar
  103. 103.
    Valencia K, Luis-Ravelo D, Bovy N, Antón I, Martínez-Canarias S, Zandueta C, et al. miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol. 2014;8(3):689–703.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Laboratories, Oncohematology DepartmentIRCCS Bambino Gesù Children’s HospitalRomeItaly
  2. 2.Department of Biotechnological and Applied Clinical SciencesUniversity of L’AquilaL’AquilaItaly

Personalised recommendations