Advertisement

Current Molecular Biology Reports

, Volume 4, Issue 2, pp 69–79 | Cite as

Signaling Pathways Underlying Bone Metastasis: Hypoxia Signaling in Bone Metastasis and Beyond

  • Claire-Sophie Devignes
  • Yetki Aslan
  • Sylvain ProvotEmail author
Molecular Biology of Bone Metastasis (H Taipaleenmäki, Section Editor)
  • 82 Downloads
Part of the following topical collections:
  1. Topical Collection on Molecular Biology of Bone Metastasis

Abstract

Purpose of Review

This review provides an overview of the mechanisms induced by hypoxia that take place within primary tumors and within the bone microenvironment, and that promote bone metastasis.

Recent Findings

In primary tumors, hypoxia stimulates metastasis by promoting vascularization, epithelial-mesenchymal transition, immunosuppression, and by inducing pre-metastatic lesions in distant tissues. In bones, local hypoxia maintains bone homeostasis and has been recently shown to promote tumor colonization, to reactivate dormant tumor cells, and strikingly, to promote systemic cancer growth and dissemination beyond the skeleton.

Summary

Hypoxia is recognized as a critical component of the tumor microenvironment that strongly affects tumor growth and metastasis. However, our knowledge of the mechanisms induced locally by hypoxia in the skeleton that promotes tumor dissemination in bones and beyond is only emerging. Recent studies identified LIFR and CXCL12 as important factors downstream of hypoxia signaling in the bone, but other molecules and mechanisms will be likely discovered in the future.

Keywords

Bone metastasis Hypoxia HIF Tumor microenvironment CXCL12 LIFR 

Notes

Acknowledgements

This manuscript was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM) and the Fondation ARC pour la Recherche Contre le Cancer (Project # R10081HS and C14007HS to S. Provot). The work performed by the authors cited here also received the support of the University of California San Francisco Academic Senate Committee on Research (Fund # 34935/500394 to S. Provot), and the Association le Cancer du Sein Parlons-en (Pink Ribbon award to S. Provot). C.S. Devignes was supported by the French Ministry of Research, and the Fondation ARC, and was recipient of the Société Française de Biologie des Tissus Minéralisés (SFBTM) award. The authors would like to acknowledge the investigators who generated the work highlighted in this review and to apologize for the published articles that were not cited due to space constraints.

Compliance with Ethical Standards

Conflict of Interest

Claire-Sophie Devignes, Yetki Aslan, and Sylvain Provot declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529(7586):298–306. This review article presents our current understanding of the general mechanisms involved in tissue colonization by tumor cells. PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    • Werb Z, Lu P. The role of stroma in tumor development. Cancer J. 2015;21(4):250–3. This review article presents an interesting overview of recent advances in our understanding of the influence of non-tumoral cells in cancer.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998;58(7):1408–16.PubMedGoogle Scholar
  4. 4.
    Vaupel P, Mayer A, Höckel M. Tumor hypoxia and malignant progression. Meth Enzymol. 2004;381:335–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science. 1988;242(4884):1412–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci U S A. 1991;88(13):5680–4.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393–402.PubMedCrossRefGoogle Scholar
  8. 8.
    Semenza GL. The hypoxic tumor microenvironment: a driving force for breast Cancer progression. Biochim Biophys Acta. 2016;1863(3):382–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Briggs KJ, Koivunen P, Cao S, Backus KM, Olenchock BA, Patel H, et al. Paracrine induction of HIF by glutamate in breast Cancer: EglN1 senses cysteine. Cell. 2016;166(1):126–39.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kaelin WG. Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb Symp Quant Biol. 2011;76:335–45.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22(20):7004–14.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Agani F, Jiang BH. Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr Cancer Drug Targets. 2013;13(3):245–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, et al. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat Cell Biol. 2016;18(2):213–24.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Goto Y, Zeng L, Yeom CJ, Zhu Y, Morinibu A, Shinomiya K, et al. UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α. Nat Commun. 2015;6:6153.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science. 2016;352(6282):175–80.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hiraga T, Kizaka-Kondoh S, Hirota K, Hiraoka M, Yoneda T. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res. 2007;67(9):4157–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Yang M-H, Wu M-Z, Chiou S-H, Chen P-M, Chang S-Y, Liu C-J, et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 2008;10(3):295–305.PubMedCrossRefGoogle Scholar
  19. 19.
    Dunn LK, Mohammad KS, Fournier PGJ, McKenna CR, Davis HW, Niewolna M, et al. Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS One. 2009;4(9):e6896.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Xiang L, Gilkes DM, Chaturvedi P, Luo W, Hu H, Takano N, et al. Ganetespib blocks HIF-1 activity and inhibits tumor growth, vascularization, stem cell maintenance, invasion, and metastasis in orthotopic mouse models of triple-negative breast cancer. J Mol Med. 2014;92(2):151–64.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci U S A. 2008;105(50):19579–86.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Charles N, Ozawa T, Squatrito M, Bleau A-M, Brennan CW, Hambardzumyan D, et al. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell. 2010;6(2):141–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 2008;13(6):472–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Luo W, Chang R, Zhong J, Pandey A, Semenza GL. Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci U S A. 2012;109(49):E3367–76.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R, et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med. 2015;7(277):277ra30.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41(4):518–28.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Baginska J, Viry E, Berchem G, Poli A, Noman MZ, van Moer K, et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc Natl Acad Sci U S A. 2013;110(43):17450–5.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chaturvedi P, Gilkes DM, Takano N, Semenza GL. Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc Natl Acad Sci U S A. 2014;111(20):E2120–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, et al. HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 2008;13(3):206–20.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Foster JG, Wong SCK, Sharp TV. The hypoxic tumor microenvironment: driving the tumorigenesis of non-small-cell lung cancer. Future Oncol. 2014;10(16):2659–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee Y-H, Bae HC, Noh KH, Song K-H, Ye S-k, Mao C-P, et al. Gain of HIF-1α under normoxia in cancer mediates immune adaptation through the AKT/ERK and VEGFA axes. Clin Cancer Res. 2015;21(6):1438–46.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.PubMedCrossRefGoogle Scholar
  33. 33.
    Henze AT, Mazzone M. The impact of hypoxia on tumor-associated macrophages. J Clin Invest. 2016;126(10):3672–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chaturvedi P, Gilkes DM, Wong CCL, Kshitiz, Luo W, Zhang H, et al. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest. 2013;123(1):189–205.PubMedGoogle Scholar
  35. 35.
    Dales J-P, Garcia S, Meunier-Carpentier S, Andrac-Meyer L, Haddad O, Lavaut M-N, et al. Overexpression of hypoxia-inducible factor HIF-1alpha predicts early relapse in breast cancer: retrospective study in a series of 745 patients. Int J Cancer. 2005;116(5):734–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Generali D, Berruti A, Brizzi MP, Campo L, Bonardi S, Wigfield S, et al. Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res. 2006;12(15):4562–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M, et al. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res. 2002;8(6):1831–7.PubMedGoogle Scholar
  38. 38.
    Jin Y, Wang H, Ma X, Liang X, Liu X, Wang Y. Clinicopathological characteristics of gynecological cancer associated with hypoxia-inducible factor 1α expression: a meta-analysis including 6,612 subjects. PLoS One. 2015;10(5):e0127229.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yamamoto Y, Ibusuki M, Okumura Y, Kawasoe T, Kai K, Iyama K, et al. Hypoxia-inducible factor 1alpha is closely linked to an aggressive phenotype in breast cancer. Breast Cancer Res Treat. 2008;110(3):465–75.PubMedCrossRefGoogle Scholar
  40. 40.
    Luan Y, Gao C, Miao Y, Li Y, Wang Z, Qiu X. Clinicopathological and prognostic significance of HIF-1α and HIF-2α expression in small cell lung cancer. Pathol Res Pract. 2013;209(3):184–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang HX, Qin C, Han FY, Wang XH, Li N. HIF-2α as a prognostic marker for breast cancer progression and patient survival. Genet Mol Res. 2014;13(2):2817–26.PubMedCrossRefGoogle Scholar
  42. 42.
    Bragado P, Sosa MS, Keely P, Condeelis J, Aguirre-Ghiso JA. Microenvironments dictating tumor cell dormancy. Recent Results Cancer Res. 2012;195:25–39.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    •• Fluegen G, Avivar-Valderas A, Wang Y, Padgen MR, Williams JK, Nobre AR, et al. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol. 2017;19(2):120–32. This article demonstrates that tissue hypoxia in primary tumors gives rise to a subpopulation of DTCs that remain dormant even when they no longer are exposed to hypoxia. These post-hypoxic dormant tumor cells could evade chemotherapy and lead to disease relapse. PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci U S A. 2014;111(50):E5429–38.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Luo D, Wang J, Li J, Post M. Mouse snail is a target gene for HIF. Mol Cancer Res. 2011;9(2):234–45.PubMedCrossRefGoogle Scholar
  46. 46.
    Gilkes DM, Xiang L, Lee SJ, Chaturvedi P, Hubbi ME, Wirtz D, et al. Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc Natl Acad Sci U S A. 2014;111(3):E384–93.PubMedCrossRefGoogle Scholar
  47. 47.
    Gilkes DM, Bajpai S, Wong CC, Chaturvedi P, Hubbi ME, Wirtz D, et al. Mol Cancer Res. 2013;11(5):456–66.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pouysségur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441(7092):437–43.PubMedCrossRefGoogle Scholar
  49. 49.
    Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XHF, Lee DJ, et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell. 2014;156(5):1002–16.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zhang H, Wong CCL, Wei H, Gilkes DM, Korangath P, Chaturvedi P, et al. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene. 2012;31(14):1757–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820–7.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    • Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670–91. This review article presents a good overview of the various biological mechanisms involve in the dissemination and the metastatic outgrowth of primary carcinomas. PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15(1):35–44.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    •• Cox TR, Rumney RMH, Schoof EM, Perryman L, Høye AM, Agrawal A, et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature. 2015;522(7554):106–10. This article presents evidence that hypoxia induces primary breast cancer cells to secrete LOX, which circulates through blood to reach the skeleton, to induce osteolytic lesions by activating osteoaclasts prior to tumoral colonization of the bones. These pre-metastatic lesions facilitate bone metastasis. PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    •• Reynaud C, Ferreras L, Di Mauro P, Kan C, Croset M, Bonnelye E, et al. Lysyl oxidase is a strong determinant of tumor cell colonization in bone. Cancer Res. 2017;77(2):268–78. This article shows that LOX production by colorectal cancer cells promotes bone metastasis and osteolytic lesions by activating osteoclasts through LOX-driven secretion of IL8. PubMedCrossRefGoogle Scholar
  56. 56.
    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17(6):816–26.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    • Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35. This article shows that tumor cells that have a tropism for a specific tissue produce specific exosomes (carrying specific integrins) that selectively fuse with cells present in the targeted tissue to establish a pre-metastatic niche. PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wang T, Gilkes DM, Takano N, Xiang L, Luo W, Bishop CJ, et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci U S A. 2014;111(31):E3234–42.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 2014;124(25):3748–57.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Aga M, Bentz GL, Raffa S, Torrisi MR, Kondo S, Wakisaka N, et al. Exosomal HIF1α supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene. 2014;33(37):4613–22.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–49.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang XHF, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell. 2013;154(5):1060–73.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858–64.PubMedCrossRefGoogle Scholar
  66. 66.
    Liang Z, Wu T, Lou H, Yu X, Taichman RS, Lau SK, et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res. 2004;64(12):4302–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res. 2005;65(3):967–71.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Hou X, Wu X, Huang P, Zhan J, Zhou T, Ma Y, et al. Osteopontin is a useful predictor of bone metastasis and survival in patients with locally advanced nasopharyngeal carcinoma. Int J Cancer. 2015;137(7):1672–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Tuck AB, O'Malley FP, Singhal H, Harris JF, Tonkin KS, Kerkvliet N, et al. Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer. 1998;79(5):502–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mänsson H. The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomark Prev. 2007;16(6):1087–97.CrossRefGoogle Scholar
  71. 71.
    Shevde LA, Samant RS, Paik JC, Metge BJ, Chambers AF, Casey G, et al. Osteopontin knockdown suppresses tumorigenicity of human metastatic breast carcinoma, MDA-MB-435. Clin Exp Met. 2006;23(2):123–33.CrossRefGoogle Scholar
  72. 72.
    Raja R, Kale S, Thorat D, Soundararajan G, Lohite K, Mane A, et al. Hypoxia-driven osteopontin contributes to breast tumor growth through modulation of HIF1α-mediated VEGF-dependent angiogenesis. Oncogene. 2014;33(16):2053–64.PubMedCrossRefGoogle Scholar
  73. 73.
    McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA, et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell. 2008;133(6):994–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Sharon Y, Raz Y, Cohen N, Ben-Shmuel A, Schwartz H, Geiger T, et al. Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast cancer. Cancer Res. 2015;75(6):963–73.PubMedCrossRefGoogle Scholar
  75. 75.
    Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–73.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Johnson RW, Sowder ME, Giaccia AJ. Hypoxia and bone metastatic disease. Curr Osteoporos Rep. 2017;15(4):231–8.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507(7492):323–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Rankin Erinn B, Wu C, Khatri R, Wilson Tremika LS, Andersen R, Araldi E, et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell. 2012;149(1):63–74.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, et al. The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Investig. 2007;117(6):1616–26.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Wu C, Rankin EB, Castellini L, Fernandez-Alcudia J, LaGory EL, Andersen R, et al. Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes Dev. 2015;29(8):817–31.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Maes C, Goossens S, Bartunkova S, Drogat B, Coenegrachts L, Stockmans I, et al. Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J. 2010;29(2):424–41.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhu W, Liang G, Huang Z, Doty SB, Boskey AL. Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development. J Biol Chem. 2011;286(30):26794–805.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Stegen S, van Gastel N, Eelen G, Ghesquière B, D'Anna F, Thienpont B, et al. HIF-1α promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support Postimplantation bone cell survival. Cell Metab. 2016;23(2):265–79.PubMedCrossRefGoogle Scholar
  84. 84.
    •• Devignes CS, Aslan Y, Brenot A, Devillers A, Schepers K, Fabre S, et al. HIF signaling in osteoblast-lineage cells promotes systemic breast cancer growth and metastasis in mice. Proc Natl Acad Sci U S A. 2018. This article demonstrates for the first time that osteoblast lineage cells directly promote breast cancer growth and metastasis outside the skeleton. This systemic pro-tumorigenic effect is mediated at last in part by CXCL12, which is secreted in large amounts by hypoxic osteoprogenitor cells upon activation of HIF signaling. Google Scholar
  85. 85.
    Mulcrone PL, Campbell JP, Clément-Demange L, Anbinder AL, Merkel AR, Brekken RA, et al. Skeletal colonization by breast Cancer cells is stimulated by an osteoblast and β2AR-dependent neo-Angiogenic switch. J Bone Miner Res. 2017;32(7):1442–54.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Muller A. Involvement of chemokine receptors in breast cancer metastasis. 2001;410.Google Scholar
  87. 87.
    Tang Z-N, Zhang F, Tang P, Qi X-W, Jiang J. Hypoxia induces RANK and RANKL expression by activating HIF-1α in breast cancer cells. Biochem Biophys Res Commun. 2011;408(3):411–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature. 2006;440(7084):692–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002;62(6):1832–7.PubMedGoogle Scholar
  90. 90.
    Wang N, Docherty FE, Brown HK, Reeves KJ, Fowles ACM, Ottewell PD, et al. Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models. J Bone Miner Res. 2014;29(12):2688–96.PubMedCrossRefGoogle Scholar
  91. 91.
    Dandajena TC, Ihnat MA, Disch B, Thorpe J, Currier GF. Hypoxia triggers a HIF-mediated differentiation of peripheral blood mononuclear cells into osteoclasts. Orthod Craniofac Res. 2012;15(1):1–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Hitchon C, Wong K, Ma G, Reed J, Lyttle D, El-Gabalawy H. Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum. 2002;46(10):2587–97.PubMedCrossRefGoogle Scholar
  93. 93.
    Martin SK, Diamond P, Williams SA, To LB, Peet DJ, Fujii N, et al. Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica. 2010;95(5):776–84.PubMedCrossRefGoogle Scholar
  94. 94.
    Park HJ, Baek KH, Lee HL, Kwon A, Hwang HR, Qadir AS, et al. Hypoxia inducible factor-1alpha directly induces the expression of receptor activator of nuclear factor-kappaB ligand in periodontal ligament fibroblasts. Mol Cells. 2011;31(6):573–8.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Zou D, Zhang Z, He J, Zhang K, Ye D, Han W, et al. Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1alpha mediated BMSCs. Biomaterials. 2012;33(7):2097–108.PubMedCrossRefGoogle Scholar
  96. 96.
    Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 2011;121(4):1298–312.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    • Wang H, Yu C, Gao X, Welte T, Muscarella Aaron M, Tian L, et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell. 2015;27(2):193–210. This article presents one of the first demonstrations that osteoblast lineage cells directly promote breast cancer metastasis to bone. Cell adhesion between osteoblasts and tumor cells mediated by cadherins leads to the activation of mTOR signaling in tumor cells in bones, enhancing metastatic growth and osteolysis. PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–93.PubMedCrossRefGoogle Scholar
  99. 99.
    Hulley PA, Bishop T, Vernet A, Schneider JE, Edwards JR, Athanasou NA, et al. Hypoxia-inducible factor 1-alpha does not regulate osteoclastogenesis but enhances bone resorption activity via prolyl-4-hydroxylase 2. J Pathol. 2017;242(3):322–33.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    • Luo X, Fu Y, Loza AJ, Murali B, Leahy KM, Ruhland MK, et al. Stromal-initiated changes in the bone promote metastatic niche development. Cell Rep. 2016;14(1):82–92. This article shows that senescent osteoblasts establish metastatic niches by secreting IL6, which promotes locally osteoclastogenesis and bone metastasis. PubMedCrossRefGoogle Scholar
  101. 101.
    Dai J, Hall CL, Escara-Wilke J, Mizokami A, Keller JM, Keller ET. Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Res. 2008;68(14):5785–94.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Ustach CV, Huang W, Conley-LaComb MK, Lin C-Y, Che M, Abrams J, et al. A novel signaling axis of matriptase/PDGF-D/ß-PDGFR in human prostate cancer. Cancer Res. 2010;70(23):9631–40.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Yin JJ, Mohammad KS, Käkönen SM, Harris S, Wu-Wong JR, Wessale JL, et al. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci U S A. 2003;100(19):10954–9.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Wang H, Lindborg C, Lounev V, Kim J-H, McCarrick-Walmsley R, Xu M, et al. Cellular hypoxia promotes heterotopic ossification by amplifying BMP signaling. J Bone Miner Res. 2016;31(9):1652–65.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Yamashita K, Discher DJ, Hu J, Bishopric NH, Webster KA. Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, AND p300/CBP. J Biol Chem. 2001;276(16):12645–53.PubMedCrossRefGoogle Scholar
  106. 106.
    ten Freyhaus H, Dagnell M, Leuchs M, Vantler M, Berghausen EM, Caglayan E, et al. Hypoxia enhances platelet-derived growth factor signaling in the pulmonary vasculature by down-regulation of protein tyrosine phosphatases. Am J Respir Crit Care Med. 2011;183(8):1092–102.PubMedCrossRefGoogle Scholar
  107. 107.
    •• Johnson RW, Finger EC, Olcina MM, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18(10):1078–89. This article reports that tissue hypoxia presents in the bone microenvronement releases disseminated breast cancer cells from dormancy, and induces them to proliferate and to form a bone metastasis by repressing LIFR-induced dormancy. PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Mauro CD, Pesapane A, Formisano L, Rosa R, D'Amato V, Ciciola P, et al. Urokinase-type plasminogen activator receptor (uPAR) expression enhances invasion and metastasis in RAS mutated tumors. Sci Rep. 2017;7(1):9388.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Vishnoi M, Peddibhotla S, Yin W, Scamardo AT, George GC, Hong DS, et al. The isolation and characterization of CTC subsets related to breast cancer dormancy. Sci Rep. 2015;5:17533.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Price TT, Burness ML, Sivan A, Warner MJ, Cheng R, Lee CH, et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med. 2016;8(340):340ra73.PubMedCrossRefGoogle Scholar
  111. 111.
    Panaroni C, Tzeng YS, Saeed H, Wu JY. Mesenchymal progenitors and the osteoblast lineage in bone marrow hematopoietic niches. Curr Osteoporos Rep. 2014;12(1):22–32.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425(6960):841–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013;15(5):533–43.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Parmar K, Mauch P, Vergilio J-A, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci. 2007;104(13):5431–6.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7(3):391–402.PubMedCrossRefGoogle Scholar
  116. 116.
    •• Engblom C, Pfirschke C, Zilionis R, Da Silva Martins J, Bos SA, Courties G, et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science. 2017;358(6367). This article shows that primary lung adenocarcinoma remotely activates bone formation and osteoblasts that mobilize a specific subset of pro-tumorigenic neutrophils in the circulation. These cells then colonize lung tumors promoting their growth. This works in one of the first to demonstrate that osteoblasts remotely promote tumor growth. Google Scholar
  117. 117.
    •• Rossnagl S, Altrock E, Sens C, Kraft S, Rau K, Milsom MD, et al. EDA-Fibronectin Originating from Osteoblasts Inhibits the Immune Response against Cancer. PLoS Biol. 2016;14(9):e1002562. This article provides the first demonstration that osteoblasts remotely promote tumor progression (in mouse models of melanoma and breast cancer) by mobilizing specific myeloid-derived cells that inhibit the immune response against tumors. PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12(1):9–22.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Woelfle U, Cloos J, Sauter G, Riethdorf L, Janicke F, van Diest P, et al. Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res. 2003;63(18):5679–84.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Claire-Sophie Devignes
    • 1
  • Yetki Aslan
    • 1
  • Sylvain Provot
    • 1
    • 2
    Email author
  1. 1.INSERM U1132 and Paris Diderot UniversityParisFrance
  2. 2.INSERM Unit 1132, Hôpital Lariboisière - Centre Viggo PetersenParisFrance

Personalised recommendations