Advertisement

Current Molecular Biology Reports

, Volume 3, Issue 4, pp 297–305 | Cite as

Molluscan Genomics: Implications for Biology and Aquaculture

  • Takeshi TakeuchiEmail author
Enhancing Agricultural Production (A Rooney, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Enhancing Agricultural Production

Abstract

Purpose of Review

As a result of advances in DNA sequencing technology, molluscan genome research, which initially lagged behind that of many other animal groups, has recently seen a rapid succession of decoded genomes. Since molluscs are highly divergent, the subjects of genome projects have been highly variable, including evolution, neuroscience, and ecology. In this review, recent findings of molluscan genome projects are summarized, and their applications to aquaculture are discussed.

Recent Findings

Recently, 14 molluscan genomes have been published. All bivalve genomes show high heterozygosity rates, making genome assembly difficult. Unique gene expansions were evident in each species, corresponding to their specialized features, including shell formation, adaptation to the environment, and complex neural systems. To construct genetic maps and to explore quantitative trait loci (QTL) and genes of economic importance, genome-wide genotyping using massively parallel, targeted sequencing of cultured molluscs was employed.

Summary

Molluscan genomics provides information fundamental to both biology and industry. Modern genomic studies facilitate molluscan biology, genetics, and aquaculture.

Keywords

Molluscan genome Genotyping Aquaculture 

Notes

Acknowledgements

I am grateful to all members of Marine Genomics Unit at OIST for their support. I also thank Dr. Steven D. Aird for editing the manuscript.

Funding Information

This research was supported by grants from the Project to Advance Institutional Bio-oriented Technology Research, NARO (special project on advanced research and development for next-generation technology), and by internal funds from the Okinawa Institute of Science and Technology (OIST).

Compliance with Ethical Standards

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Rosenberg G. A new critical estimate of named species-level diversity of the recent Mollusca. Am Malacol Bull. 2014;32(2):308–22.  https://doi.org/10.4003/006.032.0204.CrossRefGoogle Scholar
  2. 2.
    FAO. The state of world fisheries and aquaculture 2016: contributing to food security and nutrition for all. Rome: Food and Agriculture Organization; 2016.Google Scholar
  3. 3.
    FAO. The state of world fisheries and aquaculture 2006. Rome: Food Agriculture Organization; 2007.Google Scholar
  4. 4.
    FAO. FAO yearbook. Fishery and aquaculture statistics 2011. Rome: Food and Agriculture Organization; 2013.Google Scholar
  5. 5.
    Saavedra C, Bachère E. Bivalve genomics. Aquaculture. 2006;256(1–4):1–14.  https://doi.org/10.1016/j.aquaculture.2006.02.023.CrossRefGoogle Scholar
  6. 6.
    Meuwissen T, Hayes B, Goddard M. Genomic selection: a paradigm shift in animal breeding. Anim Front. 2016;6(1):6–14.  https://doi.org/10.2527/af.2016-0002.CrossRefGoogle Scholar
  7. 7.
    García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, Van Tassell CP. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci. 2016;113(28):E3995–4004.  https://doi.org/10.1073/pnas.1519061113.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.  https://doi.org/10.1038/nrg.2016.49.CrossRefPubMedGoogle Scholar
  9. 9.
    •• Takeuchi T, Kawashima T, Koyanagi R, Gyoja F, Tanaka M, Ikuta T, et al. Draft genome of the pearl oyster Pinctada fucata: a platform for understanding bivalve biology. DNA Res. 2012;19(2):117–30.  https://doi.org/10.1093/dnares/dss005. This is the first published molluscan genome article. It showed high heterozygosity in the bivalve genome CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    •• Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490(7418):49–54.  https://doi.org/10.1038/nature11413. In this study of the Pacific oyster genome, expansion of specific gene family such as HSP70 and IAPs reinforces their adaptation ability to harsh environmental stresses in the intertidal zone CrossRefPubMedGoogle Scholar
  11. 11.
    Simakov O, Marletaz F, Cho S-J, Edsinger-Gonzales E, Havlak P, Hellsten U, et al. Insights into bilaterian evolution from three spiralian genomes. Nature. 2013;493(7433):526–31.  https://doi.org/10.1038/nature11696.CrossRefPubMedGoogle Scholar
  12. 12.
    Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, et al. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature. 2015;524(7564):220–4.  https://doi.org/10.1038/nature14668.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Takeuchi T, Koyanagi R, Gyoja F, Kanda M, Hisata K, Fujie M, et al. Bivalve-specific gene expansion in the pearl oyster genome: implications of adaptation to a sessile lifestyle. Zool Lett. 2016;2(1):3.  https://doi.org/10.1186/s40851-016-0039-2.CrossRefGoogle Scholar
  14. 14.
    Murgarella M, Puiu D, Novoa B, Figueras A, Posada D, Canchaya C. A first insight into the genome of the filter-feeder mussel Mytilus galloprovincialis. PLoS One. 2016;11(3):e0151561.  https://doi.org/10.1371/journal.pone.0151561.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Adema CM, Hillier LW, Jones CS, Loker ES, Knight M, Minx P, et al. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat Commun. 2017;8:15451.  https://doi.org/10.1038/ncomms15451.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schell T, Feldmeyer B, Schmidt H, Greshake B, Tills O, Truebano M, et al. An annotated draft genome for Radix auricularia (Gastropoda, Mollusca). Genome Biol Evol. 2017;9(3):585–92.  https://doi.org/10.1093/gbe/evx032.CrossRefGoogle Scholar
  17. 17.
    Sun J, Zhang Y, Xu T, Zhang Y, Mu H, Zhang Y, et al. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nat Ecol Evol. 2017;1:0121.  https://doi.org/10.1038/s41559-017-0121.CrossRefGoogle Scholar
  18. 18.
    •• Wang S, Zhang J, Jiao W, Li J, Xun X, Sun Y, et al. Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat Ecol Evol. 2017;1:0120.  https://doi.org/10.1038/s41559-017-0120. In this study, three bivalve genome assemblies including the scallop, the Pacific oyster, and the pearl oyster were reconstructed to chromosomal level by using genetic maps. They showed the scallop genome retains bilaterian ancestral state CrossRefGoogle Scholar
  19. 19.
    Du X, Song K, Wang J, Cong R, Li L, Zhang G. Draft genome and SNPs associated with carotenoid accumulation in adductor muscles of bay scallop (Argopecten irradians). J Genom. 2017;5:83–90.  https://doi.org/10.7150/jgen.19146.CrossRefGoogle Scholar
  20. 20.
    Du X, Fan G, Jiao Y, Zhang H, Guo X, Huang R, et al. The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization. GigaScience. 2017;6(8):1–12.  https://doi.org/10.1093/gigascience/gix059.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mun S, Kim Y-J, Markkandan K, Shin W, Oh S, Woo J, et al. The whole-genome and transcriptome of the Manila clam (Ruditapes philippinarum). Genome Biol Evol. 2017;9(6):1487–98.  https://doi.org/10.1093/gbe/evx096.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nam B-H, Kwak W, Kim Y-O, Kim D-G, Kong HJ, Kim W-J, et al. Genome sequence of pacific abalone (Haliotis discus hannai): the first draft genome in family Haliotidae. GigaScience. 2017;6(5):1–8.  https://doi.org/10.1093/gigascience/gix014.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Consortium TGP. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.  https://doi.org/10.1038/nature09534.CrossRefGoogle Scholar
  24. 24.
    Guo X, He Y, Zhang L, Lelong C, Jouaux A. Immune and stress responses in oysters with insights on adaptation. Fish Shellfish Immunol. 2015;46(1):107–19.  https://doi.org/10.1016/j.fsi.2015.05.018.CrossRefPubMedGoogle Scholar
  25. 25.
    Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, Chenuil A, et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature. 2014;515(7526):261–3.  https://doi.org/10.1038/nature13685.CrossRefPubMedGoogle Scholar
  26. 26.
    Curole JP, Hedgecock D. Bivalve genomics: complications, challenges, and future perspectives. In: Aquaculture genome technologies. Oxford: Blackwell Publishing Ltd; 2007.Google Scholar
  27. 27.
    Compeau PEC, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome assembly. Nat Biotech. 2011;29(11):987–91.  https://doi.org/10.1038/nbt.2023.CrossRefGoogle Scholar
  28. 28.
    Henson J, Tischler G, Ning Z. Next-generation sequencing and large genome assemblies. Pharmacogenomics. 2012;13(8):901–15.  https://doi.org/10.2217/pgs.12.72.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, et al. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience. 2013;2(1):10.  https://doi.org/10.1186/2047-217X-2-10.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014;24(8):1384–95.  https://doi.org/10.1101/gr.170720.113.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kelley DR, Salzberg SL. Detection and correction of false segmental duplications caused by genome mis-assembly. Genome Biol. 2010;11(3):R28.  https://doi.org/10.1186/gb-2010-11-3-r28.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zheng H, Li L, Zhang G. Inbreeding depression for fitness-related traits and purging the genetic load in the hermaphroditic bay scallop Argopecten irradians irradians (Mollusca: Bivalvia). Aquaculture. 2012;366:27–33.  https://doi.org/10.1016/j.aquaculture.2012.08.029.CrossRefGoogle Scholar
  33. 33.
    Kocot KM, Jeffery NW, Mulligan K, Halanych KM, Gregory TR. Genome size estimates for Aplacophora, Polyplacophora and Scaphopoda: small solenogasters and sizeable scaphopods. J Molluscan Stud. 2016;82(1):216–9.  https://doi.org/10.1093/mollus/eyv054.CrossRefGoogle Scholar
  34. 34.
    Ieyama H, Ogaito H. Chromosomes and nuclear DNA contents of two subspecies in the Diplommatinidae. Venus:Jpn J Malacology. 1998;57(2):133–6.Google Scholar
  35. 35.
    Bonnaud L, Ozouf-Costaz C, Boucher-Rodoni R. A molecular and karyological approach to the taxonomy of Nautilus. C R Biol. 2004;327(2):133–8.  https://doi.org/10.1016/j.crvi.2003.12.004.CrossRefPubMedGoogle Scholar
  36. 36.
    Hallinan NM, Lindberg DR. Comparative analysis of chromosome counts infers three paleopolyploidies in the mollusca. Genome Biol Evol. 2011;3:1150–63.  https://doi.org/10.1093/gbe/evr087.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bao W, Kojima KK, Kohany O. Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6(1):11.  https://doi.org/10.1186/s13100-015-0041-9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nagai KA. History of the cultured pearl industry. Zool Sci. 2013;30(10):783–93.  https://doi.org/10.2108/zsj.30.783. CrossRefPubMedGoogle Scholar
  39. 39.
    Gyoja F, Satoh N. Evolutionary aspects of variability in bHLH orthologous families: insights from the pearl oyster, Pinctada fucata. Zool Sci. 2013;30(10):868–76.  https://doi.org/10.2108/zsj.30.868.CrossRefPubMedGoogle Scholar
  40. 40.
    Koga H, Hashimoto N, Suzuki DG, Ono H, Yoshimura M, Suguro T, et al. A genome-wide survey of genes encoding transcription factors in Japanese pearl oyster Pinctada fucata: II. Tbx, Fox, Ets, HMG, NFκB, bZIP, and C2H2 zinc fingers. Zool Sci. 2013;30(10):858–67.  https://doi.org/10.2108/zsj.30.858.CrossRefPubMedGoogle Scholar
  41. 41.
    Morino Y, Okada K, Niikura M, Honda M, Satoh N, Wada H. A genome-wide survey of genes encoding transcription factors in the Japanese pearl oyster, Pinctada fucata: I. Homeobox genes. Zool Sci. 2013;30(10):851–7.  https://doi.org/10.2108/zsj.30.851.CrossRefPubMedGoogle Scholar
  42. 42.
    Setiamarga DHE, Shimizu K, Kuroda J, Inamura K, Sato K, Isowa Y, et al. An in-silico genomic survey to annotate genes coding for early development-relevant signaling molecules in the pearl oyster, Pinctada fucata. Zool Sci. 2013;30(10):877–88.  https://doi.org/10.2108/zsj.30.877. CrossRefPubMedGoogle Scholar
  43. 43.
    Funabara D, Watanabe D, Satoh N, Kanoh S. Genome-wide survey of genes encoding muscle proteins in the pearl oyster, Pinctada fucata. Zool Sci. 2013;30(10):817–25.  https://doi.org/10.2108/zsj.30.817.CrossRefPubMedGoogle Scholar
  44. 44.
    Matsumoto T, Masaoka T, Fujiwara A, Nakamura Y, Satoh N, Awaji M. Reproduction-related genes in the pearl oyster genome. Zool Sci. 2013;30(10):826–50.  https://doi.org/10.2108/zsj.30.826.CrossRefPubMedGoogle Scholar
  45. 45.
    Miyamoto H, Endo H, Hashimoto N, limura K, Isowa Y, Kinoshita S, et al. The diversity of shell matrix proteins: genome-wide investigation of the pearl oyster, Pinctada fucata. Zool Sci. 2013;30(10):801–16.  https://doi.org/10.2108/zsj.30.801.CrossRefPubMedGoogle Scholar
  46. 46.
    Kinoshita S, Ning W, Inoue H, Maeyama K, Okamoto K, Nagai K, et al. Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation-related genes in the pearl oyster. PLoS One. 2011;6(6):e21238.  https://doi.org/10.1371/journal.pone.0021238.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Marie B, Joubert C, Tayalé A, Zanella-Cléon I, Belliard C, Piquemal D, et al. Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci. 2012;109(51):20986–91.  https://doi.org/10.1073/pnas.1210552109.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Liu C, Li S, Kong J, Liu Y, Wang T, Xie L, et al. In-depth proteomic analysis of shell matrix proteins of Pinctada fucata. Sci Rep. 2015;5:17269.  https://doi.org/10.1038/srep17269.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, et al. An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science. 2009;325(5946):1388–90.CrossRefPubMedGoogle Scholar
  50. 50.
    Funabara D, Ohmori F, Kinoshita S, Koyama H, Mizutani S, Ota A, et al. Novel genes participating in the formation of prismatic and nacreous layers in the pearl oyster as revealed by their tissue distribution and RNA interference knockdown. PLoS One. 2014;9(1):e84706.  https://doi.org/10.1371/journal.pone.0084706.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Marie B, Jackson DJ, Ramos-Silva P, Zanella-Cléon I, Guichard N, Marin F. The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties. FEBS J. 2013;280(1):214–32.  https://doi.org/10.1111/febs.12062.CrossRefPubMedGoogle Scholar
  52. 52.
    Feng D, Li Q, Yu H, Kong L, Du S. Identification of conserved proteins from diverse shell matrix proteome in Crassostrea gigas: characterization of genetic bases regulating shell formation. Sci Rep. 2017;7:45754.  https://doi.org/10.1038/srep45754.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mann K, Edsinger-Gonzales E, Mann M. In-depth proteomic analysis of a mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea. Proteome Sci. 2012;10(1):28.  https://doi.org/10.1186/1477-5956-10-28.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Mann K, Edsinger E. The Lottia gigantea shell matrix proteome: re-analysis including MaxQuant iBAQ quantitation and phosphoproteome analysis. Proteome Sci. 2014;12(1):28.  https://doi.org/10.1186/1477-5956-12-28.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    McDougall C, Aguilera F, Degnan BM. Rapid evolution of pearl oyster shell matrix proteins with repetitive, low-complexity domains. J R Soc Interface. 2013;10(82):20130041.  https://doi.org/10.1098/rsif.2013.0041.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Rohfritsch A, Bierne N, Boudry P, Heurtebise S, Cornette F, Lapègue S. Population genomics shed light on the demographic and adaptive histories of European invasion in the Pacific oyster, Crassostrea gigas. Evol Appl. 2013;6(7):1064–78.  https://doi.org/10.1111/eva.12086. PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ruesink JL, Lenihan HS, Trimble AC, Heiman KW, Micheli F, Byers JE, et al. Introduction of non-native oysters: ecosystem effects and restoration implications. Annu Rev Ecol Evol Syst. 2005;36:643–89.CrossRefGoogle Scholar
  58. 58.
    Orensanz JM, Schwindt E, Pastorino G, Bortolus A, Casas G, Darrigran G, et al. No longer the pristine confines of the world ocean: a survey of exotic marine species in the southwestern Atlantic. Biol Invasions. 2002;4(1):115–43.  https://doi.org/10.1023/A:1020596916153. CrossRefGoogle Scholar
  59. 59.
    Guo X. Use and exchange of genetic resources in molluscan aquaculture. Rev Aquac. 2009;1(3–4):251–9.  https://doi.org/10.1111/j.1753-5131.2009.01014.x. CrossRefGoogle Scholar
  60. 60.
    Galil BSA. Sea under siege—alien species in the Mediterranean. Biol Invasions. 2000;2(2):177–86.  https://doi.org/10.1023/A:1010057010476. CrossRefGoogle Scholar
  61. 61.
    FAO. FAO yearbook. Fishery and aquaculture statistics 2014. Rome: Food and Agriculture Organization; 2016.Google Scholar
  62. 62.
    Gerdol M, Venier P, Pallavicini A. The genome of the Pacific oyster Crassostrea gigas brings new insights on the massive expansion of the C1q gene family in Bivalvia. Dev Comp Immunol. 2015;49(1):59–71.  https://doi.org/10.1016/j.dci.2014.11.007.CrossRefPubMedGoogle Scholar
  63. 63.
    Zhang L, Li L, Guo X, Litman GW, Dishaw LJ, Zhang G. Massive expansion and functional divergence of innate immune genes in a protostome. Sci Rep. 2015;5:8693.  https://doi.org/10.1038/srep08693.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    He Y, Jouaux A, Ford SE, Lelong C, Sourdaine P, Mathieu M, et al. Transcriptome analysis reveals strong and complex antiviral response in a mollusc. Fish Shellfish Immunol. 2015;46(1):131–44.  https://doi.org/10.1016/j.fsi.2015.05.023.CrossRefPubMedGoogle Scholar
  65. 65.
    Rosenthal Joshua JC, Seeburg Peter H. A-to-I RNA editing: effects on proteins key to neural excitability. Neuron. 2012;74(3):432–9.  https://doi.org/10.1016/j.neuron.2012.04.010.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    •• Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3(10):e3376.  https://doi.org/10.1371/journal.pone.0003376. They developed reduced representation sequencing method with high-throuput sequencing technology. The method called restriction-site-associated DNA sequencing or RAD-seq is modified and actively utilized for SNP discovery in non-model aquacultuer animals CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379.  https://doi.org/10.1371/journal.pone.0019379.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wang S, Meyer E, McKay JK, Matz MV. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Meth. 2012;9(8):808–10.  https://doi.org/10.1038/nmeth.2023.CrossRefGoogle Scholar
  69. 69.
    Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One. 2013;8(3):e58700.  https://doi.org/10.1371/journal.pone.0058700.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Jiao W, Fu X, Dou J, Li H, Su H, Mao J, et al. High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing: building up an integrative genomic framework for a bivalve mollusc. DNA Res. 2014;21(1):85–101.  https://doi.org/10.1093/dnares/dst043.CrossRefPubMedGoogle Scholar
  71. 71.
    Shi Y, Wang S, Gu Z, Lv J, Zhan X, Yu C, et al. High-density single nucleotide polymorphisms linkage and quantitative trait locus mapping of the pearl oyster, Pinctada fucata martensii Dunker. Aquaculture. 2014;434:376–84.  https://doi.org/10.1016/j.aquaculture.2014.08.044.CrossRefGoogle Scholar
  72. 72.
    Li Y, He M. Genetic mapping and QTL analysis of growth-related traits in Pinctada fucata using restriction-site associated DNA sequencing. PLoS One. 2014;9(11):e111707.  https://doi.org/10.1371/journal.pone.0111707.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wang J, Li L, Zhang GA. A high-density SNP genetic linkage map and QTL analysis of growth-related traits in a hybrid family of oysters (Crassostrea gigas × Crassostrea angulata) using genotyping-by-sequencing. G3: Genes|Genomes|Genetics. 2016;6(5):1417.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bai Z, Han X, Luo M, Lin J, Wang G, Li J. Constructing a microsatellite-based linkage map and identifying QTL for pearl quality traits in triangle pearl mussel (Hyriopsis cumingii). Aquaculture. 2015;437:102–10.  https://doi.org/10.1016/j.aquaculture.2014.11.008.CrossRefGoogle Scholar
  75. 75.
    Nie H, Yan X, Huo Z, Jiang L, Chen P, Liu H, et al. Construction of a high-density genetic map and quantitative trait locus mapping in the Manila clam Ruditapes philippinarum. Sci Rep. 2017;7:229.  https://doi.org/10.1038/s41598-017-00246-0.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ren P, Peng W, You W, Huang Z, Guo Q, Chen N, et al. Genetic mapping and quantitative trait loci analysis of growth-related traits in the small abalone Haliotis diversicolor using restriction-site-associated DNA sequencing. Aquaculture. 2016;454:163–70.  https://doi.org/10.1016/j.aquaculture.2015.12.026.CrossRefGoogle Scholar
  77. 77.
    Bai Z-Y, Han X-K, Liu X-J, Li Q-Q, Li J-L. Construction of a high-density genetic map and QTL mapping for pearl quality-related traits in Hyriopsis cumingii. Sci Rep. 2016;6:32608.  https://doi.org/10.1038/srep32608.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Gutierrez AP, Turner F, Gharbi K, Talbot R, Lowe NR, Peñaloza C, et al. Development of a medium density combined-species SNP Array for Pacific and European oysters (Crassostrea gigas and Ostrea edulis). G3: Genes|Genomes|Genetics. 2017;7(7):2209.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Qi H, Song K, Li C, Wang W, Li B, Li L, et al. Construction and evaluation of a high-density SNP array for the Pacific oyster (Crassostrea gigas). PLoS One. 2017;12(3):e0174007.  https://doi.org/10.1371/journal.pone.0174007.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Jones DB, Jerry DR, Forêt S, Konovalov DA, Zenger KR. Genome-wide SNP validation and mantle tissue transcriptome analysis in the silver-lipped pearl oyster, Pinctada maxima. Mar Biotechnol. 2013;15(6):647–58.  https://doi.org/10.1007/s10126-013-9514-3.CrossRefPubMedGoogle Scholar
  81. 81.
    Zhong X, Li Q, Guo X, Yu H, Kong L. QTL mapping for glycogen content and shell pigmentation in the Pacific oyster Crassostrea gigas using microsatellites and SNPs. Aquac Int. 2014;22(6):1877–89.  https://doi.org/10.1007/s10499-014-9789-z.CrossRefGoogle Scholar
  82. 82.
    Sauvage C, Boudry P, De Koning DJ, Haley CS, Heurtebise S, Lapègue S. QTL for resistance to summer mortality and OsHV-1 load in the Pacific oyster (Crassostrea gigas). Anim Genet. 2010;41(4):390–9.  https://doi.org/10.1111/j.1365-2052.2009.02018.x. PubMedCrossRefGoogle Scholar
  83. 83.
    Hedgecock D, Shin G, Gracey AY, Den Berg DV, Samanta MP. Second-generation linkage maps for the Pacific oyster Crassostrea gigas reveal errors in assembly of genome scaffolds. G3: Genes|Genomes|Genetics. 2015, 2007;5(10)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan

Personalised recommendations