Advertisement

Current Molecular Biology Reports

, Volume 3, Issue 2, pp 114–121 | Cite as

Connecting Bone and Fat: the Potential Role for Sclerostin

  • Heather Fairfield
  • Clifford J. Rosen
  • Michaela R. Reagan
Molecular Biology of Skeletal Development (T Bellido, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Molecular Biology of Skeletal Development

Abstract

Purpose of Review

Sclerostin (SOST), a protein secreted from mature osteocytes in response to mechanical unloading and other stimuli, inhibits the osteogenic Wnt/β-catenin pathway in mesenchymal stem cells (MSCs) impeding their ability to differentiate into mineralizing osteoblasts. This review summarizes the crosstalk between adipose tissue and the bone. It also reviews the origin, regulation, and role of SOST in osteogenesis and brings attention to an emerging role of this protein in the regulation of adipogenesis.

Recent Findings

Bone-derived molecules that drive MSC adipogenesis have not previously been identified, but recent findings suggest that SOST signaling may induce adipogenesis. In vivo SOST acts locally to induce changes in the bone and, in vitro, increases adipogenesis in 3T3-L1 preadipocytes.

Summary

SOST is able to induce adipogenesis in certain preadipocytes, however, bone-specific studies are needed to determine the effect of local SOST concentrations in healthy and disease models on bone marrow adipose tissue.

Keywords

Sclerostin Adipogenesis Bone marrow adipose tissue Fat LRP Wnt 

Notes

Acknowledgements

The authors’ work is supported by MMCRI Start-up funds, a pilot project grant from the NIH/NIGMS (P30GM106391) and the NIH/NIDDK (R24DK092759-01).

Compliance with Ethical Standards

Conflict of Interest

Heather Fairfield, Clifford J. Rosen, and Michaela R. Reagan each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Shao J, Wang Z, Yang T, et al. Bone regulates glucose metabolism as an endocrine organ through osteocalcin. Int J Endocrinol. 2015;2015:1–9. doi: 10.1155/2015/967673.CrossRefGoogle Scholar
  2. 2.
    Fulzele K, Riddle RC, DiGirolamo DJ, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142:309–19. doi: 10.1016/j.cell.2010.06.002.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM. Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr. 2009;19:109–24. doi: 10.1016/j.bbi.2008.05.010.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reagan MR, Rosen CJ. Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nat Rev Rheumatol. 2015; doi: 10.1038/nrrheum.2015.160.PubMedPubMedCentralGoogle Scholar
  5. 5.
    DeMambro VE, Le PT, Guntur AR, et al. Igfbp2 deletion in ovariectomized mice enhances energy expenditure but accelerates bone loss. Endocrinology. 2015;156:4129–40. doi: 10.1210/en.2014-1452.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement Cytotherapy. 2006;8:315–7. doi: 10.1080/14653240600855905.PubMedGoogle Scholar
  7. 7.
    Fazeli PK, Horowitz MC, MacDougald OA, et al. Marrow fat and bone-new perspectives. J Clin Endocrinol Metab. 2013;98:935–45. doi: 10.1210/jc.2012-3634.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Scheller EL, Rosen CJ. What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci. 2014;1311:14–30. doi: 10.1111/nyas.12327.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bjørndal B, Burri L, Staalesen V, et al. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes. 2011;2011:490650. doi: 10.1155/2011/490650.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kalinovich AV, de Jong JMA, Cannon B, Nedergaard J. UCP1 in adipose tissues: two steps to full browning. Biochimie. 2017; doi: 10.1016/j.biochi.2017.01.007.PubMedGoogle Scholar
  11. 11.
    Ishibashi J, Seale P. Medicine. Beige can be slimming Science. 2010;328:1113–4. doi: 10.1126/science.1190816.PubMedGoogle Scholar
  12. 12.
    Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem. 2012;81:715–36. doi: 10.1146/annurev-biochem-052110-115718.CrossRefPubMedGoogle Scholar
  13. 13.
    Cawthorn WP, Scheller EL, Learman BS, et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 2014;20:368–75. doi: 10.1016/j.cmet.2014.06.003.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dalamaga M, Karmaniolas K, Panagiotou A, et al. Low circulating adiponectin and resistin, but not leptin, levels are associated with multiple myeloma risk: a case-control study. Cancer Causes Control. 2009;20:193–9. doi: 10.1007/s10552-008-9233-7.CrossRefPubMedGoogle Scholar
  15. 15.
    Scheller EL, Troiano N, Vanhoutan JN, et al. Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol. 2014;537:123–39. doi: 10.1016/B978-0-12-411619-1.00007-0.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schellinger D, Lin CS, Hatipoglu HG, Fertikh D. Potential value of vertebral proton MR spectroscopy in determining bone weakness. AJNR Am J Neuroradiol. 2001;22:1620–7.PubMedGoogle Scholar
  17. 17.
    • Berry R, Rodeheffer MS, Rosen CJ, Horowitz MC. Adipose tissue residing progenitors adipocyte lineage progenitors and adipose derived stem cells (ADSC). Curr Mol Biol reports. 2015;1:101–9. doi: 10.1007/s40610-015-0018-y. This is a comprehensive overview of the types of adipose tissue, how each of them functions, and what their similarities and differences are. Specifically, the lineage of each type of adipocyte is outlined in great detail, citing lineage tracing experiments and yielding evidence that bone marrow adipocytes are distinct from white adipocytes. Compilation of numerous findings in this review demonstrates that MSCs that give rise to osteoblasts and adipocytes are osterix positive (neonatal) and both leptin receptor and nestin-positive (adult) determining that the majority of these two cell types arise from a common progenitor population. CrossRefGoogle Scholar
  18. 18.
    • Sulston RJ, Learman BS, Zhang B, et al. Increased circulating adiponectin in response to thiazolidinediones: investigating the role of bone marrow adipose tissue. Front Endocrinol (Lausanne). 2016;7:128. doi: 10.3389/fendo.2016.00128. This paper utilizes a model published in 2007 with transgenic overexpression of Wnt10b in osteoblasts and osteocytes (Ocn-Wnt10b) which characterized increased bone (BMD, etc.) and decreased marrow space in these mice. The new paper by Sulston et al. shows direct evidence that (1) increased local Wnt signaling leads to lower MAT and (2) that this signaling is able to partially restrict MAT expansion during treatment with TZD confirming that Wnt signaling is a key regulator of MSC fate determination but also that inhibition of this pathway must be required for normal MAT formation and expansion stimulation of PPARγ in these cells is not enough. Google Scholar
  19. 19.
    MacDougald OA, Mandrup S. Adipogenesis: forces that tip the scales. Trends Endocrinol Metab. 13:5–11.Google Scholar
  20. 20.
    Zhou BO, Yue R, Murphy MM, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014;15:154–68. doi: 10.1016/j.stem.2014.06.008.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Scheller EL, Song J, Dishowitz MI, et al. Leptin functions peripherally to regulate differentiation of mesenchymal progenitor cells. Stem Cells. 2010;28:1071–80. doi: 10.1002/stem.432.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    • Yue R, Zhou BO, Shimada IS, et al. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell. 2016;18:782–96. doi: 10.1016/j.stem.2016.02.015. The leptin receptor (Lepr) was conditionally deleted from long bones during this study (Prx1-Cre;Lepr<fl/fl>) yielding animals with normal body mass. Limb bones from these animals had high bone parameters and reduced bone marrow adipose tissue demonstrating the importance of leptin signaling and energetic requirements in the overall maintenance of the bone marrow microenvironment. CrossRefPubMedGoogle Scholar
  23. 23.
    Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111:305–17.CrossRefPubMedGoogle Scholar
  24. 24.
    Fan Y, Hanai J-I, Le PT, et al. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 2017;0:166–76. doi: 10.1016/j.cmet.2017.01.001.Google Scholar
  25. 25.
    Li Z, Frey JL, Wong GW, et al. Glucose transporter-4 facilitates insulin-stimulated glucose uptake in osteoblasts. Endocrinology. 2016;157:4094–103. doi: 10.1210/en.2016-1583.CrossRefPubMedGoogle Scholar
  26. 26.
    Shi Y, Yadav VK, Suda N, et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci U S A. 2008;105:20529–33. doi: 10.1073/pnas.0808701106.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481:314–20. doi: 10.1038/nature10763.CrossRefPubMedGoogle Scholar
  28. 28.
    Lee NK, Karsenty G. Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab. 2008;19:161–6. doi: 10.1016/j.tem.2008.02.006.CrossRefPubMedGoogle Scholar
  29. 29.
    Yoshikawa Y, Kode A, Xu L, et al. Genetic evidence points to an osteocalcin-independent influence of osteoblasts on energy metabolism. J Bone Miner Res. 2011;26:2012–25. doi: 10.1002/jbmr.417.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bennett CN, Ouyang H, Ma YL, et al. Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res. 2007;22:1924–32. doi: 10.1359/jbmr.070810.CrossRefPubMedGoogle Scholar
  31. 31.
    Tu X, Delgado-Calle J, Condon KW, et al. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proc Natl Acad Sci U S A. 2015;112:E478–86. doi: 10.1073/pnas.1409857112.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li X, Ominsky MS, Niu Q-T, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23:860–9. doi: 10.1359/jbmr.080216.CrossRefPubMedGoogle Scholar
  33. 33.
    Li WF, Hou SX, Yu B, et al. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum Genet. 2010;127:249–85. doi: 10.1007/s00439-009-0773-z.CrossRefPubMedGoogle Scholar
  34. 34.
    Huang Q-Y, Li GHY, Kung AWC. The -9247 T/C polymorphism in the SOST upstream regulatory region that potentially affects C/EBPalpha and FOXA1 binding is associated with osteoporosis. Bone. 2009;45:289–94. doi: 10.1016/j.bone.2009.03.676.CrossRefPubMedGoogle Scholar
  35. 35.
    Yerges LM, Klei L, Cauley JA, et al. High-density association study of 383 candidate genes for volumetric BMD at the femoral neck and lumbar spine among older men. J Bone Miner Res. 2009;24:2039–49. doi: 10.1359/jbmr.090524.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cosman F, Crittenden DB, Adachi JD, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375:1532–43. doi: 10.1056/NEJMoa1607948.CrossRefPubMedGoogle Scholar
  37. 37.
    van Dinther M, Zhang J, Weidauer SE, et al. Anti-sclerostin antibody inhibits internalization of sclerostin and sclerostin-mediated antagonism of Wnt/LRP6 signaling. PLoS One. 2013;8:e62295. doi: 10.1371/journal.pone.0062295.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Costa AG, Bilezikian JP. Sclerostin: therapeutic horizons based upon its actions. Curr Osteoporos Rep. 2012;10:64–72. doi: 10.1007/s11914-011-0089-5.CrossRefPubMedGoogle Scholar
  39. 39.
    Mödder UI, Hoey KA, Amin S, et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res. 2011;26:373–9. doi: 10.1002/jbmr.217.CrossRefPubMedGoogle Scholar
  40. 40.
    Ma Y-HV, Schwartz AV, Sigurdsson S, et al. Circulating sclerostin associated with vertebral bone marrow fat in older men but not women. J Clin Endocrinol Metab. 2014;99:E2584–90. doi: 10.1210/jc.2013-4493.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kügel H, Jung C, Schulte O, Heindel W. Age-and sex-specific differences in the 1 H-spectrum of vertebral bone marrow. J Magn Reson Imaging. 2001;268:263–8.Google Scholar
  42. 42.
    Griffith JF, Yeung DKW, Antonio GE, et al. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology. 2005;236:945–51. doi: 10.1148/radiol.2363041425.CrossRefPubMedGoogle Scholar
  43. 43.
    Griffith JF, Yeung DKW, Antonio GE, et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology. 2006;241:831–8. doi: 10.1148/radiol.2413051858.CrossRefPubMedGoogle Scholar
  44. 44.
    Sheng Z, Tong D, Ou Y, et al. Serum sclerostin levels were positively correlated with fat mass and bone mineral density in central south Chinese postmenopausal women. Clin Endocrinol. 2012;76:797–801. doi: 10.1111/j.1365-2265.2011.04315.x.CrossRefGoogle Scholar
  45. 45.
    Urano T, Shiraki M, Ouchi Y, Inoue S. Association of circulating sclerostin levels with fat mass and metabolic disease—related markers in Japanese postmenopausal women. J Clin Endocrinol Metab. 2012;97:E1473–7. doi: 10.1210/jc.2012-1218.CrossRefPubMedGoogle Scholar
  46. 46.
    Gustafson B, Smith U. The WNT inhibitor Dickkopf 1 and bone morphogenetic protein 4 rescue adipogenesis in hypertrophic obesity in humans. Diabetes. 2012;61:1217–24. doi: 10.2337/db11-1419.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling. Science. 2000;289:950–3.CrossRefPubMedGoogle Scholar
  48. 48.
    Bennett CN, Ross SE, Longo KA, et al. Regulation of Wnt signaling during adipogenesis. J Biol Chem. 2002;277:30998–1004. doi: 10.1074/jbc.M204527200.CrossRefPubMedGoogle Scholar
  49. 49.
    Longo KA, Wright WS, Kang S, et al. Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem. 2004;279:35503–9. doi: 10.1074/jbc.M402937200.CrossRefPubMedGoogle Scholar
  50. 50.
    Longo KA, Kennell JA, Ochocinska MJ, et al. Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors. J Biol Chem. 2002;277:38239–44. doi: 10.1074/jbc.M206402200.CrossRefPubMedGoogle Scholar
  51. 51.
    Christodoulides C, Laudes M, Cawthorn WP, et al. The Wnt antagonist Dickkopf-1 and its receptors are coordinately regulated during early human adipogenesis. J Cell Sci. 2006;119:2613–20. doi: 10.1242/jcs.02975.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Frey JL, Kim S, Li Z, et al. Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. J Bone Miner Res. 2017;31:1–1. doi: 10.1002/jbmr.3107.CrossRefGoogle Scholar
  53. 53.
    • Ukita M, Yamaguchi T, Ohata N, Tamura M. Sclerostin enhances adipocyte differentiation in 3T3-L1 cells. J Cell Biochem. 2015; doi: 10.1002/jcb.25432. This paper by Ukita et al. is the first direct examination of the effect of sclerostin on a preadipocyte. The authors demonstrate increased adipogenesis as evidenced by functional (oil red o) and genetic (qPCR) outputs and suggest that the pro-adipogenic effect of SOST is via its traditional role in canonical Wnt signaling inhibition. This is extremely promising work but does not actually answer the question about the effect that SOST might be having in its local microenvironment. 3T3-L1 cells are preprogrammed as preadipocytes, similar to WAT. As demonstrated by the additional papers highlighted here, preadipocytes from WAT are distinct from bone marrow adipocytes, and thus, bone-specific studies are still required to determine whether changing levels of sclerostin can affect the bone marrow adipose depot. Google Scholar
  54. 54.
    Hong J-H, Yaffe MB. TAZ: a beta-catenin-like molecule that regulates mesenchymal stem cell differentiation. Cell Cycle. 2006;5:176–9. doi: 10.4161/cc.5.2.2362.CrossRefPubMedGoogle Scholar
  55. 55.
    Lei Q-Y, Zhang H, Zhao B, et al. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol. 2008;28:2426–36. doi: 10.1128/MCB.01874-07.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Singh L, Brennan TA, Russell E, et al. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage. Bone. 2016;85:29–36. doi: 10.1016/j.bone.2016.01.014.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Roccaro AM, Sacco A, Maiso P, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 2013;123:1542–55. doi: 10.1172/JCI66517.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhang T, Lee YW, Rui YF, et al. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther. 2013;4:70. doi: 10.1186/scrt221.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yaccoby S, Wezeman MJ, Zangari M, et al. Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica. 2006;91:192–9.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Yaccoby S, Ling W, Zhan F, et al. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood. 2007;109:2106–11. doi: 10.1182/blood-2006-09-047712.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Liu Z, Xu J, He J, et al. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation. Oncotarget. 2015;6:34329–41. doi: 10.18632/oncotarget.6020.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Delgado-Calle J, Anderson J, Cregor MD, et al. Bidirectional Notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res. 2016; doi: 10.1158/0008-5472.CAN-15-1703.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Fowler JA, Lwin ST, Drake MT, et al. Host-derived adiponectin is tumor-suppressive and a novel therapeutic target for multiple myeloma and the associated bone disease. Blood. 2011;118:5872–82. doi: 10.1182/blood-2011-01-330407.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lwin ST, Olechnowicz SWZ, Fowler JA, Edwards CM. Diet-induced obesity promotes a myeloma-like condition in vivo. Leukemia. 2015;29:507–10. doi: 10.1038/leu.2014.295.CrossRefPubMedGoogle Scholar
  65. 65.
    Justesen J, Stenderup K, Ebbesen EN, et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2001;2:165–71.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Heather Fairfield
    • 1
    • 2
  • Clifford J. Rosen
    • 1
    • 2
    • 3
  • Michaela R. Reagan
    • 1
    • 2
    • 3
  1. 1.Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughUSA
  2. 2.School of Biomedical Sciences and EngineeringUniversity of MaineOronoUSA
  3. 3.School of MedicineTufts UniversityBostonUSA

Personalised recommendations