Advertisement

Current Molecular Biology Reports

, Volume 3, Issue 1, pp 28–36 | Cite as

Polyamines: Emerging Hubs Promoting Drought and Salt Stress Tolerance in Plants

  • Miren Sequera-Mutiozabal
  • Chrystalla Antoniou
  • Antonio F. Tiburcio
  • Rubén Alcázar
  • Vasileios FotopoulosEmail author
Enhancing Agricultural Production (A Rooney, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Enhancing Agricultural Production

Abstract

Purpose of Review

Environmental stress is increasingly wearing down crop productivity. As a consequence, a major priority of plant research is to get deeper insights on tolerance mechanisms, providing solutions with the generation of stress-tolerant cultivars. To this goal, a common target of genetic modification is the polyamine signaling pathway. Its association with a protective role against stressful stimuli is widely acknowledged; however, the nature of this function is highly complex. In consequence, this review aims to present up-to-date evidence in regard with metabolic and physiological role of polyamines, protecting plants during severe stressful events (such as drought and soil salinization).

Recent Findings

The most recent evidence from stress physiology research highlight polyamines as key players in signaling responses involved in central metabolism, sugar and lipid homeostasis, maintenance, and induction of antioxidant capacity as well as osmotic regulation. Nevertheless, a number of questions remain open, such as the extent of their roles and whether they represent hub metabolic molecules. Recent advances on polyamine metabolism are therefore summarized in relation to salt and drought stress tolerance and its possible implication on the generation of tolerant crops.

Summary

This review highlights recent findings related to polyamine protective role during drought and salt stress. A clear synergy is established between these amine compounds, ABA, and reactive oxygen and nitrogen species. However, the involvement of these amine compounds on stress physiology goes far beyond the modulation of nitro-oxidative homeostasis and ABA signaling, with an increasing body of evidence demonstrating that polyamines are emerging metabolic hubs of plant stress signaling.

Keywords

Polyamines Stress signaling Oxidative stress Nitrosative stress Drought Salt stress 

Notes

Compliance with Ethical Standards

Conflict of Interest

Miren Sequera-Mutiozabal, Chrystalla Anotoniou, Antonio F. Tiburcio, Rubén Alcázar, and Vasileios Fotopoulos each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Pathak MR, Teixeira da Silva JA, Wani SH. Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food. 2014;5:87–96.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Pottosin I, Shabala S. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Front Plant Sci. 2014;5:154.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Das P, Nutan KK, Singla-Pareek SL, Pareek A. Understanding salinity responses and adopting “omics-based” approaches to generate salinity tolerant cultivars of rice. Front Plant Sci. 2015;6:712.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Schweikert K, Burritt DJ. Polyamines in macroalgae: advances and future perspectives. J Phycol. 2015;51:838–49.PubMedCrossRefGoogle Scholar
  5. 5.
    Tavladoraki P, Cona A, Angelini R. Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front Plant Sci. 2016;7Google Scholar
  6. 6.
    Takahashi T, Kakehi JI. Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot. 2010;105:1–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA. Plant polyamine catabolism: the state of the art. Plant Signal Behav. 2008;3:1061–6.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Tiburcio AF, Altabella T, Bitrián M, Alcázar R. The roles of polyamines during the lifespan of plants: from development to stress. Planta. 2014;240:1–18.PubMedCrossRefGoogle Scholar
  9. 9.
    Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, et al. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta. 2010;231:1237–49.PubMedCrossRefGoogle Scholar
  10. 10.
    Angelini R, Cona A, Federico R, Fincato P, Tavladoraki P, Tisi A. Plant amine oxidases “on the move”: an update. Plant Physiol Biochem. 2010;48:560–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Moschou PN, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis-Angelakis KA. The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot. 2012;63:5003–15.PubMedCrossRefGoogle Scholar
  12. 12.
    Takano A, Kakehi JI, Takahashi T. Thermospermine is not a minor polyamine in the plant kingdom. Plant Cell Physiol. 2012;53:606–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim DW, Watanabe K, Murayama C, Izawa S, Niitsu M, Michael AJ, et al. Polyamine oxidase 5 regulates Arabidopsis thaliana growth through a thermospermine oxidase activity. Plant Physiol. 2014;165:1575–90.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Fujihara S, Abe H, Yoneyama T. A new polyamine 4-aminobutylcadaverine. Occurrence and its biosynthesis in root nodules of adzuki bean plant Vigna angularis. J Biol Chem. 1995:9932–8.Google Scholar
  15. 15.
    Liu T, Dobashi H, Kim DW, Sagor GHM, Niitsu M, Berberich T, et al. Arabidopsis mutant plants with diverse defects in polyamine metabolism show unequal sensitivity to exogenous cadaverine probably based on their spermine content. Physiol Mol Biol Plants. 2014;20:151–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Savvides A, Ali S, Tester M, Fotopoulos V. Chemical priming against multiple abiotic stresses: mission possible? Trends Plant Sci. 2016;21:329–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Fujita M, Shinozaki K. Identification of polyamine transporters in plants: paraquat transport provides crucial clues. Plant Cell Physiol. 2014;55:855–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, et al. Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett. 2006;28:1867–76.PubMedCrossRefGoogle Scholar
  19. 19.
    Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA. Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol. 2008;147:1845–57.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K, Saito K, et al. Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in Leguminosae. Plant Cell. 2012;24:1202–16.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Planas-Portell J, Gallart M, Tiburcio AF, Altabella T. Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biol. 2013;13:109.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Wimalasekera R, Villar C, Begum T, Scherer GFE. COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid-and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction. Mol Plant. 2011;4:663–78.PubMedCrossRefGoogle Scholar
  23. 23.
    Tavladoraki P, Cona A, Federico R, Tempera G, Viceconte N, Saccoccio S, et al. Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids. 2012;42:411–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Fincato P, Moschou PN, Ahou A, Angelini R, Roubelakis-Angelakis KA, Federico R, et al. The members of Arabidopsis thaliana PAO gene family exhibit distinct tissue- and organ-specific expression pattern during seedling growth and flower development. Amino Acids. 2012;42:831–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Takahashi Y, Cong R, Sagor GHM, Niitsu M, Berberich T, Kusano T. Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. Plant Cell Rep. 2010;29:955–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Fuell C, Elliott K a, Hanfrey CC, Franceschetti M, Michael AJ. Polyamine biosynthetic diversity in plants and algae. Plant Physiol Biochem. 2010;48:513–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Mulangi V, Phuntumart V, Aouida M, Ramotar D, Morris P. Functional analysis of OsPUT1, a rice polyamine uptake transporter. Planta. 2012;235:1–11.PubMedCrossRefGoogle Scholar
  28. 28.
    Fujita M, Fujita Y, Iuchi S, Yamada K, Kobayashi Y, Urano K, et al. Natural variation in a polyamine transporter determines paraquat tolerance in Arabidopsis. Proc Natl Acad Sci. 2012;109:6343–7.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Strohm AK, Vaughn LM, Masson PH. Natural variation in the expression of ORGANIC CATION TRANSPORTER 1 affects root length responses to cadaverine in Arabidopsis. J Exp Bot. 2015;66:853–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Sagor GHM, Berberich T, Kojima S, Niitsu M, Kusano T. Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis. Plant Cell Rep. 2016;35:1247–57. This study shows evidence that Spm is involved in PA transport modulation and Cad sensitivityPubMedCrossRefGoogle Scholar
  31. 31.
    Andronis E a, Moschou PN, Toumi I, Roubelakis-Angelakis KA. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana. Front Plant Sci. 2014;5:132.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ahou A, Martignago D, Alabdallah O, Tavazza R, Stano P, Macone A, et al. A plant spermine oxidase/dehydrogenase regulated by the proteasome and polyamines. J Exp Bot. 2014;65:1585–603.PubMedCrossRefGoogle Scholar
  33. 33.
    Tong W, Yoshimoto K, Kakehi JI, Motose H, Niitsu M, Takahashi T. Thermospermine modulates expression of auxin-related genes in Arabidopsis. Front Plant Sci. 2014;5:94.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mellidou I, Moschou PN, Ioannidis NE, Pankou C, Gėmes K, Valassakis C, et al. Silencing S-adenosyl-L-methionine decarboxylase (SAMDC) in Nicotiana tabacum points at a polyamine-dependent trade-off between growth and tolerance responses. Front Plant Sci. 2016;7:1–17.CrossRefGoogle Scholar
  35. 35.
    Saxena I, Srikanth S, Chen Z. Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci. 2016;7:570.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gupta K, Sengupta A, Chakraborty M, Gupta B. Hydrogen peroxide and polyamines act as double edged swords in plant abiotic stress responses. Front Plant Sci. 2016;7:1343.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Niu L, Liao W. Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. Front Plant Sci. 2016;7:230.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Filippou P, Antoniou C, Fotopoulos V. The nitric oxide donor sodium nitroprusside regulates polyamine and proline metabolism in leaves of Medicago truncatula plants. Free Radic Biol Med. 2013;56:172–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M. A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol. 2008;49:1272–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, et al. Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell. 2008;20:1708–24.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Pál M, Szalai G, Janda T. Speculation: polyamines are important in abiotic stress signaling. Plant Sci. 2015;237:16–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Segal Floh EI, et al. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol. 2006;47:346–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, et al. Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J. 2012;72:585–99.PubMedCrossRefGoogle Scholar
  44. 44.
    Tanou G, Ziogas V, Belghazi M, Christou A, Filippou P, Job D, et al. Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell Environ. 2014;37:864–85. This report extensively demonstrates the involvement of PAs in nitro-oxidative homeostasis during salt stressPubMedCrossRefGoogle Scholar
  45. 45.
    Shi H, Chan Z. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol. 2014;56:114–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Wimalasekera R, Tebartz F, Scherer GFE. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci. 2011;181:593–603.PubMedCrossRefGoogle Scholar
  47. 47.
    Molassiotis A, Fotopoulos V. Oxidative and nitrosative signaling in plants: two branches in the same tree? Plant Signal Behav. 2011;6:210–4.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Nakashima K, Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development. Plant Cell Rep. 2013;32:959–70.PubMedCrossRefGoogle Scholar
  49. 49.
    Wei L, Wang L, Yang Y, Wang P, Guo T, Kang G. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front Plant Sci. 2015;6:458.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Rambla JL, Vera-Sirera F, Blázquez MA, Carbonell J, Granell A. Quantitation of biogenic tetraamines in Arabidopsis thaliana. Anal Biochem. 2010;397:208–11.PubMedCrossRefGoogle Scholar
  51. 51.
    Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, et al. A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun. 2007;352:486–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Alcázar R, Planas-Portell J, Saxena T, Zarza X, Bortolotti C, Cuevas J, et al. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous arginine decarboxylase 2 gene. Plant Physiol Biochem. 2010;48:547–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Alcázar R, Cuevas JC, Patron M, Altabella T, Tiburcio AF. Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant. 2006;128:448–55.CrossRefGoogle Scholar
  54. 54.
    Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun. 2004;313:369–75.PubMedCrossRefGoogle Scholar
  55. 55.
    Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, et al. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol. 2008;148:1094–105.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Espasandin FD, Maiale SJ, Calzadilla P, Ruiz OA, Sansberro PA. Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants. Plant Physiol Biochemist. 2014;76:29–35.CrossRefGoogle Scholar
  57. 57.
    Marco F, Alcázar R, Tiburcio AF, Carrasco P. Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. Omics J Integr Biol. 2011;15:775–81.CrossRefGoogle Scholar
  58. 58.
    Minocha R, Majumdar R, Minocha SC. Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci. 2014;5:175.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Mattoo AK, Minocha SC, Minocha R, Handa AK. Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids. 2010;38:405–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Page AF, Cseke LJ, Minocha R, Turlapati SA, Podila GK, Ulanov A, et al. Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome. BMC Plant Biol. 2016;16:113.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Sequera-Mutiozabal MI, Erban A, Kopka J, Atanasov KE, Bastida J, Fotopoulos V, et al. Global metabolic profiling of Arabidopsis polyamine oxidase 4 (AtPAO4) loss-of-function mutants exhibiting delayed dark-induced senescence. Front Plant Sci. 2016;7:173. This study demonstrates the metabolic connection between Spm and central metabolites of sugar and lipid metabolism (e.g. pyruvate and myo-Inositol)PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Nahar K, Hasanuzzaman M, Alam MM, Fujita M. Exogenous spermidine alleviates low temperature injury in mung bean (Vigna radiata L.) seedlings by modulating ascorbate-glutathione and glyoxalase pathway. Int J Mol Sci. 2015;16:30117–32.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Majumdar R, Barchi B, Turlapati SA, Gagne M, Minocha R, Long S, et al. Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level. Front Plant Sci. 2016;7:78.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Zarza X, Atanasov KE, Marco F, Arbona V, Carrasco P, Kopka J, et al. Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant, Cell Environ. 2016; (in press) 1–16. This study provides evidence that T-SPM is involved in plant tolerance to salt stress.Google Scholar
  65. 65.
    Bouché N, Lacombe B, Fromm H. GABA signaling: a conserved and ubiquitous mechanism. Trends Cell Biol. 2003;13:607–10.PubMedCrossRefGoogle Scholar
  66. 66.
    Bouché N, Fromm H. GABA in plants: just a metabolite? Trends Plant Sci. 2004;9:110–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Kang J, Turano FJ. The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2003;100:6872–7.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ. Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci. 2012;193–194:130–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Handa AK, Mattoo AK. Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem. 2010;48:540–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Van den Ende W. Sugars take a central position in plant growth, development and, stress responses. A focus on apical dominance. Front Plant Sci. 2014;5:1–3.CrossRefGoogle Scholar
  71. 71.
    Krasensky J, Broyart C, Rabanal F, Jonak C. The redox-sensitive chloroplast trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance. Antioxid Redox Signal. 2014;21:1–16.CrossRefGoogle Scholar
  72. 72.
    Kasukabe Y, He LX, Nada K, Misawa S, Ihara I, Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol. 2004;45:712–22.PubMedCrossRefGoogle Scholar
  73. 73.
    Kusano T, Suzuki H, editors. Polyamines: a universal molecular nexus for growth, survival, and specialized metabolism. Tokio: Springer; 2015.Google Scholar
  74. 74.
    Agudelo-Romero P, Ali K, Choi YH, Sousa L, Verpoorte R, Tiburcio AF, et al. Plant physiology and biochemistry perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira. Plant Physiol Biochem. 2014;74:141–55.PubMedCrossRefGoogle Scholar
  75. 75.
    Bae H, Kim SH, Kim MS, Sicher RC, Lary D, Strem MD, et al. The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiol Biochem. 2008;46:174–88.PubMedCrossRefGoogle Scholar
  76. 76.
    Hatmi S, Gruau C, Trotel-Aziz P, Villaume S, Rabenoelina F, Baillieul F, et al. Drought stress tolerance in grapevine involves activation of polyamine oxidation contributing to improved immune response and low susceptibility to Botrytis cinerea. J Exp Bot. 2014;66:775–87.PubMedCrossRefGoogle Scholar
  77. 77.
    An ZF, Li CY, Zhang LX. Alva a. K. Role of polyamines and phospholipase D in maize (Zea mays L.) response to drought stress. South African J Bot. 2012;83:145–50.CrossRefGoogle Scholar
  78. 78.
    Mao X, Zhang H, Tian S, Chang X, Jing R. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot. 2010;61:683–96.PubMedCrossRefGoogle Scholar
  79. 79.
    Kim SH, Kim SH, Palaniyandi SA, Yang SH, Suh J-W. Expression of potato S-adenosyl-l-methionine synthase (SbSAMS) gene altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Plant Physiol Biochem. 2015;87:84–91.PubMedCrossRefGoogle Scholar
  80. 80.
    Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol. 2002;20:613–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Soudek P, Ursu M, Petrová Š, Vaněk T. Improving crop tolerance to heavy metal stress by polyamine application. Food Chem. 2016;213:223–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Montesinos-Pereira D, Barrameda-Medina Y, Romero L, Ruiz JM, Sánchez-Rodríguez E. Genotype differences in the metabolism of proline and polyamines under moderate drought in tomato plants. Plant Biol. 2014;16:1050–7.PubMedGoogle Scholar
  83. 83.
    Rouphael Y, Colla G, Bernardo L, Kane D, Trevisan M, Lucini L. Zinc excess triggered polyamines accumulation in lettuce root metabolome, as compared to osmotic stress under high salinity. Front Plant Sci. 2016;7:1–10.Google Scholar
  84. 84.
    Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Mahmud J-A, Suzuki T, et al. Insights into spermine-induced combined high temperature and drought tolerance in mung bean: osmoregulation and roles of antioxidant and glyoxalase system. Protoplasma. 2016; (in press) doi:  10.1007/s00709-016-0965-z.
  85. 85.
    Romero L, Ruiz JM. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress. J Plant Physiol. 2016;190:72–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Li Z, Jing W, Peng Y, Zhang XQ, Ma X, Huang LK, et al. Spermine alleviates drought stress in white clover with different resistance by influencing carbohydrate metabolism and dehydrins synthesis. PLoS One. 2015;10:e0120708.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Peng D, Wang X, Li Z, Zhang Y, Peng Y, Li Y, et al. NO is involved in spermidine-induced drought tolerance in white clover via activation of antioxidant enzymes and genes. Protoplasma. 2016;253:1243–54. This study provides evidence that cross-talk signaling between NO and Spd is essential to induce anti-oxidant machinery towards protection against water stressPubMedCrossRefGoogle Scholar
  88. 88.
    Wang P, Du Y, Hou Y-J, Zhao Y, Hsu C-C, Yuan F, et al. Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci. 2015;112:613–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W. Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiol. 2014;165:759–73.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Chen J, Shang Y-T, Wang W-H, Chen X-Y, He E-M, Zheng H-L, et al. Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings. Front Plant Sci. 2016;7:1–18.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Ma D, Ding H, Wang C, Qin H, Han Q, Hou J, et al. Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS One. 2016;11:e0163082.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Liu Y, Liang H, Lv X, Liu D, Wen X, Liao Y. Effect of polyamines on the grain filling of wheat under drought stress. Plant Physiol Biochem. 2016;100:113–29.PubMedCrossRefGoogle Scholar
  93. 93.
    Hura T, Dziurka M, Hura K, Ostrowska A, Dziurka K. Free and cell wall-bound polyamines under long-term water stress applied at different growth stages of ×Triticosecale Wittm. PLoS One. 2015;10:e0135002.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Nahar K, Hasanuzzaman M, Rahman A, Alam MM, Mahmud J-A, Suzuki T, et al. Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Front Plant Sci. 2016;7:1104.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Zhang Y, Zhang H, Zou ZR, Liu Y, Hu XH. Deciphering the protective role of spermidine against saline-alkaline stress at physiological and proteomic levels in tomato. Phytochemistry. 2015;110:13–21. This study demonstrates the alleviating effect of Spd against salt stress effects by inducing detoxification mechanismsPubMedCrossRefGoogle Scholar
  96. 96.
    Hu L, Xiang L, Li S, Zou Z, Hu XH. Beneficial role of spermidine in chlorophyll metabolism and D1 protein content in tomato seedlings under salinity-alkalinity stress. Physiol Plant. 2016;156:468–77.PubMedCrossRefGoogle Scholar
  97. 97.
    Shu S, Yuan Y, Chen J, Sun J, Zhang W, Tang Y, et al. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Sci. Rep. 2015;5:14390. This report shows that Put is able to modulate fatty acid mobilization in chloroplasts during salt stress, exerting a protective role for the plantPubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yuan Y, Zhong M, Shu S, Du N, Sun J, Guo S. Proteomic and physiological analyses reveal putrescine responses in roots of cucumber stressed by NaCl. Front Plant Sci. 2016;7:1035.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Du J, Shu S, An Y, Zhou H, Guo S, Sun J. Influence of exogenous spermidine on carbon–nitrogen metabolism under Ca(NO3)2 stress in cucumber root. Plant Growth Regul. 2016;129:79–91.Google Scholar
  100. 100.
    Xing SG, Jun YB, Hau ZW, Liang LY. Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. Plant Physiol Biochem. 2007;45:560–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Zarei A, Trobacher CP, Shelp BJ. Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production. Sci Rep. 2016;6:35115.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hu X, Xu Z, Xu W, Li J, Zhao N, Zhou Y. Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO3)2 stress. Plant Physiol Biochem. 2015;92:1–10.PubMedCrossRefGoogle Scholar
  103. 103.
    Li S, Jin H, Zhang Q. The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in zoysiagrass (Zoysia japonica Steud) subjected to short-term salinity stress. Front Plant Sci. 2016;7Google Scholar
  104. 104.
    López-Gómez M, Hidalgo-Castellanos J, Lluch C, Herrera-Cervera JA. 24-Epibrassinolide ameliorates salt stress effects in the symbiosis Medicago truncatula-Sinorhizobium meliloti and regulates the nodulation in cross-talk with polyamines. Plant Physiol Biochem. 2016;108:212–21.PubMedCrossRefGoogle Scholar
  105. 105.
    Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, et al. How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot. 2002;89:907–16.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Rangan P, Subramani R, Kumar R, Singh AK, Singh R. Recent advances in polyamine metabolism and abiotic stress tolerance. Biomed Res Int. 2014;2014:239621.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    García-Mata C, Lamattina L. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol. 2010;188:977–84.PubMedCrossRefGoogle Scholar
  108. 108.
    Kaur N, Dhawan M, Sharma I, Pati PK. Interdependency of reactive oxygen species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice. BMC Plant Biol. 2016;16:1–13.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Miren Sequera-Mutiozabal
    • 1
  • Chrystalla Antoniou
    • 2
  • Antonio F. Tiburcio
    • 1
  • Rubén Alcázar
    • 1
  • Vasileios Fotopoulos
    • 2
    Email author
  1. 1.Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of PharmacyUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of Agricultural Sciences, Biotechnology and Food ScienceCyprus University of TechnologyLimassolCyprus

Personalised recommendations