Arnold Mathematical Journal

, Volume 5, Issue 2–3, pp 355–371 | Cite as

Newton–Okounkov Polytopes of Flag Varieties for Classical Groups

  • Valentina KiritchenkoEmail author
Research Contribution


For classical groups \(SL_n(\mathbb {C})\), \(SO_n(\mathbb {C})\) and \(Sp_{2n}(\mathbb {C})\), we define uniformly geometric valuations on the corresponding complete flag varieties. The valuation in every type comes from a natural coordinate system on the open Schubert cell, and is combinatorially related to the Gelfand–Zetlin pattern in the same type. In types A and C, we identify the corresponding Newton–Okounkov polytopes with the Feigin–Fourier–Littelmann–Vinberg polytopes. In types B and D, we compute low-dimensional examples and formulate open questions.


Newton–Okounkov convex body Flag variety FFLV polytope 



I am grateful to the referee for the careful reading of the paper and useful comments.


  1. Ardila, F., Bliem, Th, Salazar, D.: Gelfand-Tsetlin polytopes and Feigin–Fourier–Littelmann–Vinberg polytopes as marked poset polytopes. J. Comb. Theory Ser. A 118(8), 2454–2462 (2011)MathSciNetCrossRefGoogle Scholar
  2. Backhaus, T., Kus, D.: The PBW filtration and convex polytopes in type \(B\). J. Pure Appl. Algebra 223(1), 245–276 (2019)MathSciNetCrossRefGoogle Scholar
  3. Belyaev, A., Avramenko, S., Agakishiev, G., Pechenov, V., Rikhvitsky, V.: On the initial approximation of charged particle tracks in detectors with linear sensing elements. Nucl. Instrum. Methods Phy. Res. 938, 1–4 (2019). CrossRefGoogle Scholar
  4. Berenstein, A.D., Zelevinsky, A.V.: Tensor product multiplicities and convex polytopes in partition space. J. Geom. Phys. 5, 453–472 (1989)MathSciNetCrossRefGoogle Scholar
  5. Bernstein, D.N.: The number of roots of a system of equations. Funct. Anal. Appl. 9, 183–185 (1975)MathSciNetCrossRefGoogle Scholar
  6. Brion, M.: Lectures on the geometry of flag varieties, Topics in cohomological studies of algebraic varieties, 33–85. Trends Math. Birkhäuser, Basel (2005)Google Scholar
  7. Brion, M.: Groupe de Picard et nombres caracteristiques des varietes spheriques. Duke Math J. 58(2), 397–424 (1989)MathSciNetCrossRefGoogle Scholar
  8. De Concini, C., Procesi, C.: Complete symmetric varieties II Intersection theory, Advanced Studies in Pure Mathematics 6 (1985), Algebraic groups and related topics, 481–513Google Scholar
  9. Feigin, E., Fourier, Gh, Littelmann, P.: PBW filtration and bases for irreducible modules in type \(A_n\). Transform. Groups 165(1), 71–89 (2011)CrossRefGoogle Scholar
  10. Feigin, E., Fourier, Gh, Littelmann, P.: PBW filtration and bases for for symplectic Lie algebras. IMRN (24):5760–5784 (2011)Google Scholar
  11. Feigin, E., Fourier, Gh, Littelmann, P.: Favourable modules: Filtrations, polytopes, Newton-Okounkov bodies and flat degenerations. Transform. Groups 22(2), 321–352 (2017)MathSciNetCrossRefGoogle Scholar
  12. Fujita, N., Oya, H.: A comparison of Newton-Okounkov polytopes of Schubert varieties. J. London Math. Soc. 2, (2017).
  13. Fulton, W., Harris, J.: Representation theory: a first course. Springer, New York (2004)CrossRefGoogle Scholar
  14. Gornitskii, A. A.: Essential Signatures and Canonical Bases for Irreducible Representations of \(D_4\), preprint arXiv:1507.07498 [math.RT]
  15. Kaveh, K.: Crystal basis and Newton-Okounkov bodies. Duke Math. J. 164(13), 2461–2506 (2015)MathSciNetCrossRefGoogle Scholar
  16. Kaveh, K., Khovanskii, A.: Newton convex bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. (2) 176(2), 925–978 (2012)Google Scholar
  17. Kaveh, K., Khovanskii, A.G.: Convex bodies associated to actions of reductive groups. Moscow Math. J. 12(2), 369–396 (2012)MathSciNetCrossRefGoogle Scholar
  18. Kazarnovskii, B.Ya.: Newton polyhedra and the Bezout formula for matrix-valued functions of finite-dimensional representations. Funct. Anal. Appl. 21(4), 319–321 (1987)Google Scholar
  19. Kiritchenko, V.: Geometric mitosis. Math. Res. Lett. 23(4), 1069–1096 (2016)MathSciNetCrossRefGoogle Scholar
  20. Kiritchenko, V.: Newton–Okounkov polytopes of flag varieties. Transform. Groups 22(2), 387–402 (2017)MathSciNetCrossRefGoogle Scholar
  21. Khovanskii, A.G.: Newton polyhedra, and the genus of complete intersections. Funct. Anal. Appl. 12(1), 38–46 (1978)MathSciNetCrossRefGoogle Scholar
  22. Kushnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32(1), 1–31 (1976)MathSciNetCrossRefGoogle Scholar
  23. Lazarsfeld, R., Mustata, M.: Convex Bodies Associated to Linear Series. Annales Scientifiques de l’ENS 42(5), 783–835 (2009)MathSciNetzbMATHGoogle Scholar
  24. Makhlin, I.: FFLV-type monomial bases for type \(B\), preprint arXiv:1610.07984 [math.RT]
  25. Molev, A.I.: Gelfand–Tsetlin bases for classical Lie algebras, Handbook of Algebra (M. Hazewinkel, Ed.), 4, Elsevier, Amsterdam, 2006, 109–170Google Scholar
  26. Okounkov, A.: Note on the Hilbert polynomial of a spherical variety. Funct. Anal. Appl. 31(2), 138–140 (1997)MathSciNetCrossRefGoogle Scholar
  27. Okounkov, A.: Multiplicities and Newton polytopes, Kirillov’s seminar on representation theory. Am. Math. Soc. Transl. Ser. 2(181), 231–244 (1998)MathSciNetzbMATHGoogle Scholar
  28. Zhelobenko, D.P.: An analogue of the Gel’fand-Tsetlin basis for symplectic Lie algebras. Russ. Math. Surveys 42(6), 247–248 (1987)CrossRefGoogle Scholar

Copyright information

© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2019

Authors and Affiliations

  1. 1.Laboratory of Algebraic Geometry and Faculty of Mathematics, National Research University Higher School of EconomicsRussian FederationMoscowRussia
  2. 2.Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations