# Shifted Quantum Affine Algebras: Integral Forms in Type *A*

- 54 Downloads
- 3 Citations

## Abstract

We define an integral form of shifted quantum affine algebras of type *A* and construct Poincaré–Birkhoff–Witt–Drinfeld bases for them. When the shift is trivial, our integral form coincides with the RTT integral form. We prove that these integral forms are closed with respect to the coproduct and shift homomorphisms. We prove that the homomorphism from our integral form to the corresponding quantized *K*-theoretic Coulomb branch of a quiver gauge theory is always surjective. In one particular case we identify this Coulomb branch with the extended quantum universal enveloping algebra of type *A*. Finally, we obtain the rational (homological) analogues of the above results [proved earlier in Kamnitzer et al. (Proc Am Math Soc **146**(2):861–874, 2018a; On category \(\mathcal {O}\) for affine Grassmannian slices and categorified tensor products. arXiv:1806.07519, 2018b) via different techniques].

## Keywords

Shifted Yangians Shifted quantum affine algebras Coulomb branch Evaluation homomorphism Drinfeld-Gavarini duality PBWD bases## Notes

### Acknowledgements

We are deeply grateful to A. Braverman, P. Etingof, B. Feigin, A. Molev, and A. Weekes. Special thanks go to R. Kodera and C. Wendlandt for pointing out two inaccuracies in the earlier version of this paper. Alexander Tsymbaliuk gratefully acknowledges support from Yale University, and is extremely grateful to MPIM (Bonn, Germany), IPMU (Kashiwa, Japan), RIMS (Kyoto, Japan) for the hospitality and wonderful conditions in the summer 2018 during the work on this project. The final version of this paper was prepared during Alexander Tsymbaliuk’s visit to IHES (Bures-sur-Yvette, France) in the summer 2019, sponsored under the ERC QUASIFT grant agreement 677368. Alexander Tsymbaliuk is indebted to T. Arakawa (RIMS), T. Milanov (IPMU), V. Pestun (IHES) for their invitations. Michael Finkelberg was partially funded within the framework of the HSE University Basic Research Program and the Russian Academic Excellence Project ‘5-100’. Alexander Tsymbaliuk was partially supported by the NSF Grant DMS-1821185.

## References

- Appel, A., Gautam, S.: An explicit isomorphism between quantum and classical \(\mathfrak{sl}_n\) (2017). arXiv:1712.03601
- Beilinson, A., Ginzburg, V.: Wall-crossing functors and \(\cal{D}\)-modules. Rep. Theory
**3**, 1–31 (1999)MathSciNetCrossRefGoogle Scholar - Braverman, A., Finkelberg, M.: Finite difference quantum Toda lattice via equivariant \(K\)-theory. Transf. Group.
**10**(3–4), 363–386 (2005)MathSciNetCrossRefGoogle Scholar - Braverman, A., Finkelberg, M., Nakajima, H.: Coulomb branches of \(3d\cal{N} =4\) quiver gauge theories and slices in the affine Grassmannian (with appendices by A. Braverman, M. Finkelberg, J. Kamnitzer, R. Kodera, H. Nakajima, B. Webster, A. Weekes) (2016). arXiv:1604.03625
- Braverman, A., Finkelberg, M., Nakajima, H.: Ring objects in the equivariant derived Satake category arising from Coulomb branches (with appendix by G. Lonergan) (2017). arXiv:1706.02112
- Braverman, A., Finkelberg, M., Nakajima, H.: Towards a mathematical definition of Coulomb branches of 3-dimensional \(\cal{N} =4\) gauge theories, II. Adv. Theor. Math. Phys.
**22**(5), 1071–1147 (2019). arXiv:1601.03586 MathSciNetCrossRefGoogle Scholar - Brundan, J., Kleshchev, A.: Shifted Yangians and finite W-algebras. Adv. Math.
**200**(1), 136–195 (2006)MathSciNetCrossRefGoogle Scholar - Bullimore, M., Dimofte, T., Gaiotto, D.: The Coulomb branch of \(3d \cal{N}=4\) theories. Commun. Math. Phys.
**354**(2), 671–751 (2017)CrossRefGoogle Scholar - Bullimore, M., Dimofte, T., Gaiotto, D., Hilburn, J., Kim, H.: Vortices and Vermas. Adv. Theor. Math. Phys.
**22**(4), 803–917 (2018)MathSciNetCrossRefGoogle Scholar - Cautis, S., Williams, H.: Cluster theory of the coherent Satake category (2018). arXiv:1801.08111
- Chari, V., Pressley, A.: Fundamental representations of Yangians and singularities of \(R\)-matrices. J. Reine Angew. Math.
**417**, 87–128 (1991)MathSciNetzbMATHGoogle Scholar - Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
- Chari, V., Pressley, A.: Quantum affine algebras at roots of unity. Rep. Theory
**1**, 280–328 (1997)MathSciNetCrossRefGoogle Scholar - Ding, J., Frenkel, I.: Isomorphism of two realizations of quantum affine algebra \(U_q(\widehat{\mathfrak{gl}(n)})\). Commun. Math. Phys.
**156**(2), 277–300 (1993)CrossRefGoogle Scholar - Drinfeld, V.: Quantum groups. Proceedings of International Congress of Mathematics (Berkeley), American Mathematical Society (1987), pp. 798–820 (1986)Google Scholar
- Drinfeld, V.: Hopf algebras and the quantum Yang–Baxter equation. (Russian) Dokl. Akad. Nauk SSSR
**283**(5), 1060–1064 (1985)MathSciNetGoogle Scholar - Drinfeld, V.: A New realization of Yangians and quantized affine algebras. Sov. Math. Dokl.
**36**(2), 212–216 (1988)Google Scholar - Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras, I. Select. Math. (N.S.)
**2**(1), 1–41 (1996)MathSciNetCrossRefGoogle Scholar - Faddeev, L., Reshetikhin, N., Takhtadzhyan, L.: Quantization of Lie groups and Lie algebras. (Russian) Algebra i Analiz
**1**(1), 178–206 (1989); translation in Leningrad Math. J.**1**(1), 193–225 (1990)Google Scholar - Finkelberg, M., Tsymbaliuk, A.: Multiplicative slices, relativistic Toda and shifted quantum affine algebras (2017). arXiv:1708.01795
- Finkelberg, M., Kamnitzer, J., Pham, K., Rybnikov, L., Weekes, A.: Comultiplication for shifted Yangians and quantum open Toda lattice. Adv. Math.
**327**, 349–389 (2018)MathSciNetCrossRefGoogle Scholar - Gavarini, F.: The quantum duality principle. Ann. Inst. Fourier (Grenoble)
**52**(3), 809–834 (2002)MathSciNetCrossRefGoogle Scholar - Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: On a class of representations of the Yangian and moduli space of monopoles. Commun. Math. Phys.
**260**(3), 511–525 (2005)MathSciNetCrossRefGoogle Scholar - Gow, L., Molev, A.: Representations of twisted \(q\)-Yangians. Select. Math. (N.S.)
**16**(3), 439–499 (2010)MathSciNetCrossRefGoogle Scholar - Grojnowski, I.: Affinizing quantum algebras: from \(D\)-modules to \(K\)-theory. https://www.dpmms.cam.ac.uk/~groj/char.ps. Accessed date 11 Nov 1994
- Guay, N., Nakajima, H., Wendlandt, C.: Coproduct for Yangians of affine Kac–Moody algebras. Adv. Math.
**338**, 865–911 (2018)MathSciNetCrossRefGoogle Scholar - Guay, N., Regelskis, V., Wendlandt, C.: Equivalences between three presentations of orthogonal and symplectic Yangians. Lett. Math. Phys.
**109**(2), 327–379 (2019)MathSciNetCrossRefGoogle Scholar - Hopkins, M.: Quantum affine algebras: quantum Sylvester theorem, skew modules and centraliser construction. PhD thesis (2007)Google Scholar
- Iohara, K.: Bosonic representations of Yangian double \(\cal{D}Y_\hbar (\mathfrak{g})\) with \(\mathfrak{g}=\mathfrak{gl}_N,\mathfrak{sl}_N\). J. Phys. A
**29**(15), 4593–4621 (1996)MathSciNetCrossRefGoogle Scholar - Jimbo, M.: A \(q\)-analogue of \(U({\mathfrak{gl}}(N+1))\), Hecke algebra, and the Yang–Baxter equation. Lett. Math. Phys.
**11**(3), 247–252 (1986)MathSciNetCrossRefGoogle Scholar - Jing, N.: On Drinfeld realization of quantum affine algebras. In: Monster and Lie Algebras, Ohio State Univ. Math. Res. Inst. Publ. de Gruyter, Berlin, p. 7 (1998)Google Scholar
- Kamnitzer, J., Muthiah, D., Weekes, A., Yacobi, O.: Reducedness of affine Grassmannian slices in type \(A\). Proc. Am. Math. Soc.
**146**(2), 861–874 (2018)MathSciNetCrossRefGoogle Scholar - Kamnitzer, J., Tingley, P., Webster, B., Weekes, A., Yacobi, O.: On category \(\cal{O}\) for affine Grassmannian slices and categorified tensor products (2018). arXiv:1806.07519
- Kamnitzer, J., Webster, B., Weekes, A., Yacobi, O.: Yangians and quantizations of slices in the affine Grassmannian. Algebra Number Theory
**8**(4), 857–893 (2014)MathSciNetCrossRefGoogle Scholar - Levendorskii, S.: On PBW bases for Yangians. Lett. Math. Phys.
**27**(1), 37–42 (1993)MathSciNetCrossRefGoogle Scholar - Lusztig, G.: Introduction to quantum groups. Progress in Mathematics pp. 110 (1993)Google Scholar
- Lusztig, G.: Finite dimensional Hopf algebras arising from quantized universal enveloping algebras. J. Am. Math. Soc.
**3**(1), 257–296 (1990)MathSciNetzbMATHGoogle Scholar - Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc.
**3**(2), 447–498 (1990)MathSciNetCrossRefGoogle Scholar - Molev, A.: Yangians and Classical Lie Algebras. Mathematical Surveys and Monographs, vol. 143. American Mathematical Society, Providence, RI (2007)CrossRefGoogle Scholar
- Negut, A.: Quantum toroidal and shuffle algebras (2013). arXiv:1302.6202
- Tsymbaliuk, A.: PBWD bases and shuffle algebra realizations for \(U_{\varvec {v}}(L\mathfrak{sl}_n),U_{{\varvec {v}}_1,{\varvec {v}}_2}(L\mathfrak{sl}_n),U_{\varvec {v}}(L\mathfrak{sl}(m|n))\) and their integral forms (2018). arXiv:1808.09536
- Webster, B., Weekes, A., Yacobi, O.: A quantum Mirković-Vybornov isomorphism (2017). arXiv:1706.03841
- Wendlandt, C.: From Yangians to Yangian doubles, in progress (2018)Google Scholar