Arnold Mathematical Journal

, Volume 5, Issue 2–3, pp 197–283 | Cite as

Shifted Quantum Affine Algebras: Integral Forms in Type A

  • Michael Finkelberg
  • Alexander TsymbaliukEmail author
Research Contribution


We define an integral form of shifted quantum affine algebras of type A and construct Poincaré–Birkhoff–Witt–Drinfeld bases for them. When the shift is trivial, our integral form coincides with the RTT integral form. We prove that these integral forms are closed with respect to the coproduct and shift homomorphisms. We prove that the homomorphism from our integral form to the corresponding quantized K-theoretic Coulomb branch of a quiver gauge theory is always surjective. In one particular case we identify this Coulomb branch with the extended quantum universal enveloping algebra of type A. Finally, we obtain the rational (homological) analogues of the above results [proved earlier in Kamnitzer et al. (Proc Am Math Soc 146(2):861–874, 2018a; On category \(\mathcal {O}\) for affine Grassmannian slices and categorified tensor products. arXiv:1806.07519, 2018b) via different techniques].


Shifted Yangians Shifted quantum affine algebras Coulomb branch Evaluation homomorphism Drinfeld-Gavarini duality PBWD bases 



We are deeply grateful to A. Braverman, P. Etingof, B. Feigin, A. Molev, and A. Weekes. Special thanks go to R. Kodera and C. Wendlandt for pointing out two inaccuracies in the earlier version of this paper. Alexander Tsymbaliuk gratefully acknowledges support from Yale University, and is extremely grateful to MPIM (Bonn, Germany), IPMU (Kashiwa, Japan), RIMS (Kyoto, Japan) for the hospitality and wonderful conditions in the summer 2018 during the work on this project. The final version of this paper was prepared during Alexander Tsymbaliuk’s visit to IHES (Bures-sur-Yvette, France) in the summer 2019, sponsored under the ERC QUASIFT grant agreement 677368. Alexander Tsymbaliuk is indebted to T. Arakawa (RIMS), T. Milanov (IPMU), V. Pestun (IHES) for their invitations. Michael Finkelberg was partially funded within the framework of the HSE University Basic Research Program and the Russian Academic Excellence Project ‘5-100’. Alexander Tsymbaliuk was partially supported by the NSF Grant DMS-1821185.


  1. Appel, A., Gautam, S.: An explicit isomorphism between quantum and classical \(\mathfrak{sl}_n\) (2017). arXiv:1712.03601
  2. Beilinson, A., Ginzburg, V.: Wall-crossing functors and \(\cal{D}\)-modules. Rep. Theory 3, 1–31 (1999)MathSciNetCrossRefGoogle Scholar
  3. Braverman, A., Finkelberg, M.: Finite difference quantum Toda lattice via equivariant \(K\)-theory. Transf. Group. 10(3–4), 363–386 (2005)MathSciNetCrossRefGoogle Scholar
  4. Braverman, A., Finkelberg, M., Nakajima, H.: Coulomb branches of \(3d\cal{N} =4\) quiver gauge theories and slices in the affine Grassmannian (with appendices by A. Braverman, M. Finkelberg, J. Kamnitzer, R. Kodera, H. Nakajima, B. Webster, A. Weekes) (2016). arXiv:1604.03625
  5. Braverman, A., Finkelberg, M., Nakajima, H.: Ring objects in the equivariant derived Satake category arising from Coulomb branches (with appendix by G. Lonergan) (2017). arXiv:1706.02112
  6. Braverman, A., Finkelberg, M., Nakajima, H.: Towards a mathematical definition of Coulomb branches of 3-dimensional \(\cal{N} =4\) gauge theories, II. Adv. Theor. Math. Phys. 22(5), 1071–1147 (2019). arXiv:1601.03586 MathSciNetCrossRefGoogle Scholar
  7. Brundan, J., Kleshchev, A.: Shifted Yangians and finite W-algebras. Adv. Math. 200(1), 136–195 (2006)MathSciNetCrossRefGoogle Scholar
  8. Bullimore, M., Dimofte, T., Gaiotto, D.: The Coulomb branch of \(3d \cal{N}=4\) theories. Commun. Math. Phys. 354(2), 671–751 (2017)CrossRefGoogle Scholar
  9. Bullimore, M., Dimofte, T., Gaiotto, D., Hilburn, J., Kim, H.: Vortices and Vermas. Adv. Theor. Math. Phys. 22(4), 803–917 (2018)MathSciNetCrossRefGoogle Scholar
  10. Cautis, S., Williams, H.: Cluster theory of the coherent Satake category (2018). arXiv:1801.08111
  11. Chari, V., Pressley, A.: Fundamental representations of Yangians and singularities of \(R\)-matrices. J. Reine Angew. Math. 417, 87–128 (1991)MathSciNetzbMATHGoogle Scholar
  12. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  13. Chari, V., Pressley, A.: Quantum affine algebras at roots of unity. Rep. Theory 1, 280–328 (1997)MathSciNetCrossRefGoogle Scholar
  14. Ding, J., Frenkel, I.: Isomorphism of two realizations of quantum affine algebra \(U_q(\widehat{\mathfrak{gl}(n)})\). Commun. Math. Phys. 156(2), 277–300 (1993)CrossRefGoogle Scholar
  15. Drinfeld, V.: Quantum groups. Proceedings of International Congress of Mathematics (Berkeley), American Mathematical Society (1987), pp. 798–820 (1986)Google Scholar
  16. Drinfeld, V.: Hopf algebras and the quantum Yang–Baxter equation. (Russian) Dokl. Akad. Nauk SSSR 283(5), 1060–1064 (1985)MathSciNetGoogle Scholar
  17. Drinfeld, V.: A New realization of Yangians and quantized affine algebras. Sov. Math. Dokl. 36(2), 212–216 (1988)Google Scholar
  18. Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras, I. Select. Math. (N.S.) 2(1), 1–41 (1996)MathSciNetCrossRefGoogle Scholar
  19. Faddeev, L., Reshetikhin, N., Takhtadzhyan, L.: Quantization of Lie groups and Lie algebras. (Russian) Algebra i Analiz 1(1), 178–206 (1989); translation in Leningrad Math. J. 1(1), 193–225 (1990)Google Scholar
  20. Finkelberg, M., Tsymbaliuk, A.: Multiplicative slices, relativistic Toda and shifted quantum affine algebras (2017). arXiv:1708.01795
  21. Finkelberg, M., Kamnitzer, J., Pham, K., Rybnikov, L., Weekes, A.: Comultiplication for shifted Yangians and quantum open Toda lattice. Adv. Math. 327, 349–389 (2018)MathSciNetCrossRefGoogle Scholar
  22. Gavarini, F.: The quantum duality principle. Ann. Inst. Fourier (Grenoble) 52(3), 809–834 (2002)MathSciNetCrossRefGoogle Scholar
  23. Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: On a class of representations of the Yangian and moduli space of monopoles. Commun. Math. Phys. 260(3), 511–525 (2005)MathSciNetCrossRefGoogle Scholar
  24. Gow, L., Molev, A.: Representations of twisted \(q\)-Yangians. Select. Math. (N.S.) 16(3), 439–499 (2010)MathSciNetCrossRefGoogle Scholar
  25. Grojnowski, I.: Affinizing quantum algebras: from \(D\)-modules to \(K\)-theory. Accessed date 11 Nov 1994
  26. Guay, N., Nakajima, H., Wendlandt, C.: Coproduct for Yangians of affine Kac–Moody algebras. Adv. Math. 338, 865–911 (2018)MathSciNetCrossRefGoogle Scholar
  27. Guay, N., Regelskis, V., Wendlandt, C.: Equivalences between three presentations of orthogonal and symplectic Yangians. Lett. Math. Phys. 109(2), 327–379 (2019)MathSciNetCrossRefGoogle Scholar
  28. Hopkins, M.: Quantum affine algebras: quantum Sylvester theorem, skew modules and centraliser construction. PhD thesis (2007)Google Scholar
  29. Iohara, K.: Bosonic representations of Yangian double \(\cal{D}Y_\hbar (\mathfrak{g})\) with \(\mathfrak{g}=\mathfrak{gl}_N,\mathfrak{sl}_N\). J. Phys. A 29(15), 4593–4621 (1996)MathSciNetCrossRefGoogle Scholar
  30. Jimbo, M.: A \(q\)-analogue of \(U({\mathfrak{gl}}(N+1))\), Hecke algebra, and the Yang–Baxter equation. Lett. Math. Phys. 11(3), 247–252 (1986)MathSciNetCrossRefGoogle Scholar
  31. Jing, N.: On Drinfeld realization of quantum affine algebras. In: Monster and Lie Algebras, Ohio State Univ. Math. Res. Inst. Publ. de Gruyter, Berlin, p. 7 (1998)Google Scholar
  32. Kamnitzer, J., Muthiah, D., Weekes, A., Yacobi, O.: Reducedness of affine Grassmannian slices in type \(A\). Proc. Am. Math. Soc. 146(2), 861–874 (2018)MathSciNetCrossRefGoogle Scholar
  33. Kamnitzer, J., Tingley, P., Webster, B., Weekes, A., Yacobi, O.: On category \(\cal{O}\) for affine Grassmannian slices and categorified tensor products (2018). arXiv:1806.07519
  34. Kamnitzer, J., Webster, B., Weekes, A., Yacobi, O.: Yangians and quantizations of slices in the affine Grassmannian. Algebra Number Theory 8(4), 857–893 (2014)MathSciNetCrossRefGoogle Scholar
  35. Levendorskii, S.: On PBW bases for Yangians. Lett. Math. Phys. 27(1), 37–42 (1993)MathSciNetCrossRefGoogle Scholar
  36. Lusztig, G.: Introduction to quantum groups. Progress in Mathematics pp. 110 (1993)Google Scholar
  37. Lusztig, G.: Finite dimensional Hopf algebras arising from quantized universal enveloping algebras. J. Am. Math. Soc. 3(1), 257–296 (1990)MathSciNetzbMATHGoogle Scholar
  38. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990)MathSciNetCrossRefGoogle Scholar
  39. Molev, A.: Yangians and Classical Lie Algebras. Mathematical Surveys and Monographs, vol. 143. American Mathematical Society, Providence, RI (2007)CrossRefGoogle Scholar
  40. Negut, A.: Quantum toroidal and shuffle algebras (2013). arXiv:1302.6202
  41. Tsymbaliuk, A.: PBWD bases and shuffle algebra realizations for \(U_{\varvec {v}}(L\mathfrak{sl}_n),U_{{\varvec {v}}_1,{\varvec {v}}_2}(L\mathfrak{sl}_n),U_{\varvec {v}}(L\mathfrak{sl}(m|n))\) and their integral forms (2018). arXiv:1808.09536
  42. Webster, B., Weekes, A., Yacobi, O.: A quantum Mirković-Vybornov isomorphism (2017). arXiv:1706.03841
  43. Wendlandt, C.: From Yangians to Yangian doubles, in progress (2018)Google Scholar

Copyright information

© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2019

Authors and Affiliations

  1. 1.Department of MathematicsNational Research University Higher School of EconomicsMoscowRussian Federation
  2. 2.Skolkovo Institute of Science and TechnologyInstitute for Information Transmission ProblemsMoscowRussian Federation
  3. 3.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations