Modular Cauchy Kernel Corresponding to the Hecke Curve

  • Nina SakharovaEmail author
Research Contribution


By definition, put
$$\begin{aligned} \mu _{\gamma }(z_1, z_2)=cz_1z_2+dz_2+az_1+b, \end{aligned}$$



  1. Abramowitz, M., Stegun, I.: Pocketbook of Mathematical Functions. Verlag Harri Deutsch, Thun (1984)zbMATHGoogle Scholar
  2. Borcherds, R.E.: Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109, 405–444 (1992)MathSciNetCrossRefGoogle Scholar
  3. Bringmann, K., Kane, B., Lobrich, S., Ono, K., Rolen, L.: On Divisors of Modular Forms. Cornell University. Series “Working papers by Cornell University”. No. 1609.08100v4 (2017)Google Scholar
  4. Brunier, J.H.: Borcherds products and Chern classes of Hirzebruch-Zagier divisors. Invent. Math. 138, 51–83 (1999)MathSciNetCrossRefGoogle Scholar
  5. Brunier, J.H.: Infinite products in number theory and geometry. Jahresber. Dtsch. Math. Ver. 106, Heft 4, 151–184 (2004)MathSciNetGoogle Scholar
  6. Gross, B.H.: Heegner points and the modular curve of prime level. J. Math. Soc. Jpn. 39(2), 345–362 (1987)MathSciNetCrossRefGoogle Scholar
  7. Hejhal, D.A.: The Selberg Trace Formula for \({\rm PSL}(2, {\mathbb{R}})\) Lecture Notes in Mathematics 1001. Springer, Berlin (1983)Google Scholar
  8. Iwaniec, H.: Topics in Classical Automorphic Forms. Amer. Math. Soc, Providence (1997)CrossRefGoogle Scholar
  9. Kuznetsov, N.V.: Petersson’s conjecture for cusp forms of weight zero and Linnik’s conjecture, sums of Kloosterman sums. Mat. Sb. (N.S.) 111(153), 334–383 (1980)MathSciNetzbMATHGoogle Scholar
  10. Lang, S.: Introduction to Modular Forms. Springer, Berlin (1995)Google Scholar
  11. Sakharova, N.: Convergence of the Zagier Type Series for the Cauchy Kernel. Cornell University. Series “Working papers by Cornell University”. No. 1503.05503. (2015)Google Scholar
  12. Sarnak, P.: Some Applications of Modular Forms. Cambridge U. Press, Cambridge (1990)CrossRefGoogle Scholar
  13. Weil, A.: Elliptic Functions according to Eisenstein and Kronecker. Springer, Berlin (1976)CrossRefGoogle Scholar
  14. Weil, A.: On some exponential sums. Proc. Natl. Acad. Sci. USA. 34, 204–207 (1948)MathSciNetCrossRefGoogle Scholar
  15. Zagier, D.: Modular forms associated to real quadratic fields. Invent. Math. 30, 1–46 (1975)MathSciNetCrossRefGoogle Scholar
  16. Zagier, D.: Modular Forms Whose Fourier coefficients Involve Zeta-Functions of Quadratic Fields in Modular Functions of One Variable VI. Lecture Notes in Math, vol. 627. Springer, Berlin (1977)zbMATHGoogle Scholar
  17. Zagier, D.: Traces des operateurs de Hecke. Seminaire Delange-Pisot-Poitou , Expose No. 23. (1975–1976)Google Scholar

Copyright information

© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2019

Authors and Affiliations

  1. 1.National Research University Higher School of Economics, Russian Federation Laboratory of Mirror SymmetryMoscowRussia

Personalised recommendations