Monash Bioethics Review

, Volume 34, Issue 2, pp 101–116 | Cite as

CRISPR as a driving force: the Model T of biotechnology

  • Carlos Mariscal
  • Angel Petropanagos
Original Article


The CRISPR system for gene editing can break, repair, and replace targeted sections of DNA. Although CRISPR gene editing has important therapeutic potential, it raises several ethical concerns. Some bioethicists worry CRISPR is a prelude to a dystopian future, while others maintain it should not be feared because it is analogous to past biotechnologies. In the scientific literature, CRISPR is often discussed as a revolutionary technology. In this paper we unpack the framing of CRISPR as a revolutionary technology and contrast it with framing it as a value-threatening biotechnology or business-as-usual. By drawing on a comparison between CRISPR and the Ford Model T, we argue CRISPR is revolutionary as a product, process, and as a force for social change. This characterization of CRISPR offers important conceptual clarity to the existing debates surrounding CRISPR. In particular, conceptualizing CRISPR as a revolutionary technology structures regulatory goals with respect to this new technology. Revolutionary technologies have characteristic patterns of implementation, entrenchment, and social impact. As such, early identification of technologies as revolutionary may help construct more nuanced and effective ethical frameworks for public policy.


Biotechnology CRISPR CRISPR/Cas9 Gene editing Gene therapy Revolutionary technology 



Funding in support of this research was provided by the Canada Research Chair in Bioethics and Philosophy on “Impact Ethics: Making a Difference” and the Natural Sciences and Engineering Research Council of Canada grant no. GLDSU/447989. We thank the team at Novel Tech Ethics, Dalhousie University for their feedback on earlier drafts.


  1. Alizon, F., S.B. Shooter, and T.W. Simpson. 2009. Henry Ford and the Model T: Lessons for product platforming and mass customization. Design Studies 30(5): 588–605.CrossRefGoogle Scholar
  2. Baltimore, D., F. Baylis, P. Berg, G.Q. Daley, J.A. Doudna, E.S. Lander, R. Lovell-Badge, P. Ossorio, D. Pei, A. Thrasher, E. Winnacker, and Q. Zhou. 2015a. On human gene editing: International summit statement. (Press Release).
  3. Baltimore, D., P. Berg, M. Botchan, D. Carroll, R.A. Charo, G. Church, J.E. Corn, G.Q. Daley, J.A. Doudna, M. Fenner, H.T. Greely, M. Jinek, S.G. Martin, E. Perhoet, J. Puck, S.H. Sternberg, J.S. Weissman, and K.R. Yamamoto. 2015b. A prudent path forward for genomic engineering and germline gene modification. Science 348(6230): 36–38.CrossRefGoogle Scholar
  4. Barrangou, R. 2014. Cas9 targeting and the CRISPR revolution. Science 344(6185): 707–708.CrossRefGoogle Scholar
  5. Bostrom, N. 2007. Technological revolution: Ethics and policy in the dark. In Nanoscale: Issues and perspectives for the nano century, ed. M. Nigel, S. de Cameron, and E.M. Mitchell, 129–152. New York: Wiley.CrossRefGoogle Scholar
  6. Brunet, T.D.P. 2016. Aims and methods of biosteganography. Journal of Biotechnology 226: 56–64.CrossRefGoogle Scholar
  7. Carroll, D. 2014. Genome engineering with targetable nucleases. Annual Review of Biochemistry 83: 409–439.CrossRefGoogle Scholar
  8. Carroll, S.B. 2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134(1): 25–36.CrossRefGoogle Scholar
  9. Charo, R.A., and H.T. Greely. 2015. CRISPR critters and CRISPR cracks. The American Journal of Bioethics 15(12): 11–17.CrossRefGoogle Scholar
  10. Christenson, C. 1997. The innovator’s dilemma. Cambridge, MA: Harvard Business School Press.Google Scholar
  11. Chung, E. 2015. Synbiota biohacking kits let you do genetic engineering at home. CBC News, October 15. Retrieved November 4, 2015.
  12. Collingridge, D. 1980. The social control of technology. London: Pinter.Google Scholar
  13. Colman, A. 2008. Stem cell research in Singapore. Cell 132(4): 519–521.CrossRefGoogle Scholar
  14. Cong, L., F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121): 819–823.CrossRefGoogle Scholar
  15. Cowan, C. 2015. Measuring off-target events, efficiency, and utility. Presentation, information-gathering meeting for the planning committee organizing the international summit on human gene editing, October 5, Washington, DC.Google Scholar
  16. Davies, M.J., V.M. Moore, K.J. Willson, P. Van Essen, K. Priest, H. Scott, E.A. Haan, and A. Chan. 2012. Reproductive technologies and the risk of birth defects. New England Journal of Medicine 366(19): 1803–1813.CrossRefGoogle Scholar
  17. Dhar, D., and J. Hsi-en Ho. 2009. Stem cell research policies around the world. The Yale Journal of Biology and Medicine 82(3): 113–115.Google Scholar
  18. DiCarlo, J.E., J.E. Norville, P. Mali, X. Rios, J. Aach, and G.M. Church. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research 41(7): 4336–4343.CrossRefGoogle Scholar
  19. Ding, Q., S.N. Regan, Y. Xia, L.A. Oostrom, C.A. Cowan, and K. Musunuru. 2013. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12(4): 393.CrossRefGoogle Scholar
  20. Duncan, J. 2011. Any colour-so long as it’s black: Designing the Model T Ford 1906–1908. New Zealand: Exisle Publishing.Google Scholar
  21. Esvelt, K.M., A.L. Smidler, F. Catteruccia, and G.M. Church. 2014. Concerning RNA-guided gene drives for the alteration of wild populations. Elife 3: e03401.CrossRefGoogle Scholar
  22. Friedland, A.E., Y.B. Tzur, K.M. Esvelt, M.P. Colaiácovo, G.M. Church, and J.A. Calarco. 2013. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods 10(8): 741–743.CrossRefGoogle Scholar
  23. Friedmann, T., and R. Roblin. 1972. Gene therapy for human genetic disease? Science 175(4025): 949–955.CrossRefGoogle Scholar
  24. Gallo, M., and R. Sayre. 2009. Removing allergens and reducing toxins from food crops. Current Opinion in Biotechnology 20(2): 191–196.CrossRefGoogle Scholar
  25. Gantz, V.M., N. Jasinskiene, O. Tatarenkova, A. Fazekas, V.A. Macias, E. Bier, and A.A. James. 2015. November 23). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proceedings of the National Academy of Sciences 112(49): E6736–E6743.CrossRefGoogle Scholar
  26. Gibson, D.G., G.A. Benders, C. Andrews-Pfannkoch, E.A. Denisova, H. Baden-Tillson, J. Zaveri, T.B. Stockwell, et al. 2008. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867): 1215–1220.CrossRefGoogle Scholar
  27. Gratz, S.J., A.M. Cummings, J.N. Nguyen, D.C. Hamm, L.K. Donohue, M.M. Harrison, J. Wildonger, and K.M. O’Connor-Giles. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194(4): 1029–1035.CrossRefGoogle Scholar
  28. Harris, J. 2016. Germline modification and the burden of human existence. Cambridge Quarterly of Healthcare Ethics 25(1): 1–13.CrossRefGoogle Scholar
  29. Hosman, E. 2015. Gene therapy: Comeback? Cost-prohibitive?, November 19. Retrieved November 20, 2015.
  30. Hwang, W.Y., Y. Fu, D. Reyon, M.L. Maeder, S.Q. Tsai, J.D. Sander, R.T. Peterson, J.R.J. Yeh, and J.K. Joung. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31(3): 227–229.CrossRefGoogle Scholar
  31. Ingrassia, P. 2008. This car changed America: A look at Ford’s Model T, which debuted 100 years ago. Wall Street Journal, September 27. Retrieved November 24, 2015.
  32. Jiang, W., D. Bikard, D. Cox, F. Zhang, and L.A. Marraffini. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology 31(3): 233–239.CrossRefGoogle Scholar
  33. Jinek, M., A. East, A. Cheng, S. Lin, E. Ma, and J.A. Doudna. 2013. RNA-programmed genome editing in human cells. Elife 2: e00471.CrossRefGoogle Scholar
  34. Kennedy, E.M., and B.R. Cullen. 2015. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment. Virology 479: 213–220.CrossRefGoogle Scholar
  35. Kline, R., and T. Pinch. 1996. Users as agents of technological change: The social construction of the automobile in the rural United States. Technology and Culture 37(4): 763–795.CrossRefGoogle Scholar
  36. Kutter, S. 2015. Gene therapy conquered: The 1-million-euro syringe. Wirtschafts Woche Medicine, April 4. Retrieved November 4, 2015.
  37. Lanphier, E., F. Urnov, S.E. Haecker, M. Werner, and J. Smolenski. 2015. Don’t edit the human germ line. Nature 519(7544): 410–411.CrossRefGoogle Scholar
  38. Larson, C. 2015. China’s bold push into genetically customized animals. Science American, November 17. Retrieved November 20, 2015.
  39. Ledford, H. 2015. CRISPR, the disruptor. Nature 522(7554): 20–24.CrossRefGoogle Scholar
  40. Lewis, T. 2015. Chinese scientists want to sell these teensy genetically-engineered pigs as pets. Business Insider, September 30. Retrieved November 4, 2015.
  41. Li, D., Z. Qiu, Y. Shao, Y. Chen, Y. Guan, M. Liu, Y. Li, et al. 2013a. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology 31(8): 681–683.CrossRefGoogle Scholar
  42. Li, F.D., Y. Li, H. Liu, H.H. Zhang, C.X. Liu, X.J. Zhang, H.W. Dou, W.X. Yang, and Y.T. Du. 2014. Production of GHR double-allelic knockout Bama pig by TALENs and handmade cloning. Yi Chuan 36(9): 903–911.Google Scholar
  43. Li, J.F., J.E. Norville, J. Aach, M. McCormack, D. Zhang, J. Bush, G.M. Church, and J. Sheen. 2013b. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31(8): 688–691.CrossRefGoogle Scholar
  44. Li, W., F. Teng, T. Li, and Q. Zhou. 2013c. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology 31(8): 684–686.CrossRefGoogle Scholar
  45. Liang, P., Y. Xu, X. Zhang, C. Ding, R. Huang, Z. Zhang, J. Lv, et al. 2015. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell 6(5): 363–372.CrossRefGoogle Scholar
  46. Mali, P., L. Yang, K.M. Esvelt, J. Aach, M. Guell, J.E. DiCarlo, J.E. Norville, and G.M. Church. 2013. RNA-guided human genome engineering via Cas9. Science 339(6121): 823–826.CrossRefGoogle Scholar
  47. Mariscal, C. 2015. Universal biology: Assessing universality from a single example. In The impact of discovering life beyond earth, ed. S. Dick. Cambridge: Cambridge University Press.Google Scholar
  48. Moor, J.H. 2005. Why we need better ethics for emerging technologies. Ethics and Information Technology 7(3): 111–119.CrossRefGoogle Scholar
  49. Morange, M. 2015. Genetic modification of the human germ line: The reasons why this project has no future. Comptes Rendus Biologies 338(8): 554–558.CrossRefGoogle Scholar
  50. Nekrasov, V., B. Staskawicz, D. Weigel, J.D.C. Jones, and S. Kamoun. 2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology 31(8): 691–693.CrossRefGoogle Scholar
  51. Nriagu, J.O. 1990. The rise and fall of leaded gasoline. Science of the Total Environment 92: 13–28.CrossRefGoogle Scholar
  52. Peng, Z. 2005. Current status of gendicine in China: Recombinant human Ad-p53 agent for treatment of cancers. Human Gene Therapy 16(9): 1016–1027.CrossRefGoogle Scholar
  53. Räty, J.K., J.T. Pikkarainen, T. Wirth, and S. Ylä-Herttuala. 2008. Gene therapy: The first approved gene-based medicines, molecular mechanisms and clinical indications. Current Molecular Pharmacology 1(1): 13–23.CrossRefGoogle Scholar
  54. Reardon, S. 2015. Leukaemia success heralds wave of gene-editing therapies. Nature News 527(7577): 146–147. Retrieved November 5, 2015.
  55. Sander, J.D., E.J. Dahlborg, M.J. Goodwin, L. Cade, F. Zhang, D. Cifuentes, S.J. Curtin, S.J. Blackburn, S. Thibodeau-Beganny, Y. Qi, C.J. Pierick, E. Hoffman, M.L. Maeder, C. Khayter, D. Reyon, D. Dobbs, D.M. Langenau, R.M. Stupar, A.J. Giraldez, D.F. Voytas, R.T. Peterson, J.R.J. Yeh, and J.K. Joung. 2011. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods 8(1): 67–69.CrossRefGoogle Scholar
  56. Sherkow, J.S., and H.T. Greely. 2013. What if extinction is not forever? Science 340(6128): 32–33.CrossRefGoogle Scholar
  57. Sigma-Aldrich. 2011. Sigma® life science reaches milestone in gene editing with increased affordability for CompoZr® ZFNs and the expansion of knockout ZFNs to include every gene in mice and rats advances in technology platform and new production center result in more content and less expensive Compozr ZFNs. Retrieved November 4, 2015.
  58. Sontheimer, E.J., and R. Barrangou. 2015. The bacterial origins of the CRISPR genome-editing revolution. Human Gene Therapy 26(7): 413–424.CrossRefGoogle Scholar
  59. Specter, M. 2015. The gene hackers. The New Yorker, November 16. Retrieved November 20, 2015.
  60. Sturgeon, T., and Florida, R. (2000). Globalization and jobs in the automotive industry. Final report to the Alfred P. Sloan Foundation. International Motor Vehicle Program, Center for Technology, Policy, and Industrial Development, Massachusetts Institute of Technology. Retrieved November 5, 2015.
  61. U.S. Food and Drug Administration (FDA). 2015. Cellular and gene therapy products, October 20. Retrieved November 4, 2015.
  62. Waltz, E. 2016. Gene-edited CRISPR mushroom escapes US regulation. Nature News 532: 293.CrossRefGoogle Scholar
  63. Wang, H., H. Yang, C.S. Shivalila, M.M. Dawlaty, A.W. Cheng, F. Zhang, and R. Jaenisch. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4): 910–918.CrossRefGoogle Scholar
  64. Williams, K., C. Haslam, and J. Williams. 1992. Ford versus Fordism: The beginning of mass production? Work, Employment & Society 6(4): 517–555.CrossRefGoogle Scholar
  65. Wilson, J.M. 2005. Gendicine: The first commercial gene therapy product; Chinese translation of editorial. Human Gene Therapy 16(9): 1014–1015.CrossRefGoogle Scholar
  66. Womack, J.P., D.T. Jones, and D. Roos. 1990. The machine that changed the world. New York: Rawson Associates.Google Scholar
  67. Yang, L., M. Güell, D. Niu, H. George, E. Lesha, D. Grishin, J. Aach, et al. 2015. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350(6264): 1101–1104.CrossRefGoogle Scholar
  68. Yeadon, J. 2015. Pros and cons of ZFNs, TALENs, and CRISPR/Cas. Retrieved November 4, 2015.
  69. Zhang, L., and Q. Zhou. 2014. CRISPR/Cas technology: a revolutionary approach for genome engineering. Science China Life Sciences 57(6): 639–640.CrossRefGoogle Scholar
  70. Zhou, Q. 2015. Overview of Chinese gene editing research and policy. Question and answer period, information-gathering meeting for the planning committee organizing the international summit on human gene editing, October 5, Washington, DC.Google Scholar
  71. Zimmer, C. 2013. Bringing them back to life. National Geographic 223(4): 28.Google Scholar

Copyright information

© Monash University 2016

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of Nevada, RenoRenoUSA
  2. 2.Novel Tech Ethics, Department of MedicineDalhousie UniversityHalifaxCanada

Personalised recommendations