Advertisement

One-dimensional conformable fractional Dirac system

  • Bilender P. Allahverdiev
  • Hüseyin TunaEmail author
Original Article
  • 29 Downloads

Abstract

In this article, we consider a conformable fractional Dirac system. We prove an existence and uniqueness theorem for this system and formulate a self-adjoint boundary-value problem. We also construct the associated Green matrix of the conformable fractional Dirac system, and we give the eigenfunction expansions. Finally, we give some examples.

Keywords

Conformable fractional Dirac system Self-adjoint operator Eigenvalues and eigenfunctions Green’s matrix Eigenfunction expansions 

Mathematics Subject Classification

34A08 26A33 34L10 34L40 47A10 47B25 

Notes

References

  1. 1.
    Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abdeljawad, T., Al Horani, M., Khalil, R.: Conformable fractional semigroup operators. J. Semigroup Theory Appl. 2015(7) (2015)Google Scholar
  3. 3.
    Abdeljawad, T., Alzabut, J., Jarad, F.: A generalized Lyapunov-type in-equality in the frame of conformable derivatives. Adv. Differ. Equ. 2017, 321 (2017)CrossRefzbMATHGoogle Scholar
  4. 4.
    Abdeljawad, T., Agarwal, R.P., Alzabut, J., Jarad, F., Ozbekler, A.: Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives. J. Inequal. Appl. 2018, 143 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Abu, Hammad M., Khalil, R.: Conformable fractional heat differential equations. Int. J. Pure Appl. Math. 94(2), 215–221 (2014)Google Scholar
  6. 6.
    Abu, Hammad M., Khalil, R.: Abel’s formula and Wronskian for conformable fractional differential equations. Int. J. Differ. Equ. Appl. 13(3), 177–183 (2014)zbMATHGoogle Scholar
  7. 7.
    Al-Refai, M., Abdeljawad, T.: Fundamental results of conformable Sturm–Liouville eigenvalue problems. Complexity (art. ID 3720471) (2017)Google Scholar
  8. 8.
    Allahverdiev, B.P., Tuna, H.: One-dimensional \(q\)-Dirac equation. Math. Methods Appl. Sci. 40(18), 7287–7306 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Allahverdiev, B.P., Tuna, H., Yalçinkaya, Y.: Conformable fractional Sturm–Liouville equation. Math. Methods Appl. Sci. 1–19.  https://doi.org/10.1002/mma.5595 (2019)
  10. 10.
    Anderson, D.R., Ulness, D.J.: Newly defined conformable derivatives. Adv. Dyn. Syst. Appl. 10(2), 109–137 (2015)MathSciNetGoogle Scholar
  11. 11.
    Anderson, D.R., Ulness, D.J.: Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J. Math. Phys. 56(6), 063502 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Anderson, D.R.: Taylor’s formula and integral inequalities for conformable fractional derivatives. In: Contributions in Mathematics and Engineering, in Honor of Constantin Caratheodory. Springer, New York, pp. 25–43 (2016)Google Scholar
  13. 13.
    Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13, 889–898 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Benkhettou, N., Hassani, S., Torres, D.F.M.: A conformable fractional calculus on arbitrary time scales. J. King Saud Univ. 28(1), 93–98 (2016)CrossRefGoogle Scholar
  15. 15.
    Cenesiz, Y., Baleanu, D., Kurt, A., Tasbozan, O.: New exact solutions of Burgers type equations with conformable derivative. Waves Random Complex Media.  https://doi.org/10.1080/17455030.2016.1205237
  16. 16.
    Chung, W.S.: Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290, 150–158 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gulsen, T., Yilmaz, E., Goktas, S.: Conformable fractional Dirac system on time scales. J. Inequal. Appl. 2017, 161 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Karayer, H., Demirhan, D., Büyükkilic, D.: Conformable fractional Nikiforov–Uvarov method. Commun. Theor. Phys. 66, 12–18 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jarad, F., Adjabi, Y., Baleanu, D., Abdeljawad, T.: On defining the distributions \(\delta ^{r}\) and \(\left( \delta ^{\prime }\right) ^{r} \)by conformable derivatives Adv. Differ. Equ. 2018, 407 (2018)CrossRefzbMATHGoogle Scholar
  21. 21.
    Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Khalil, R., Abu, Hammad M.: Systems of linear fractional differential equations. Asian J. Math. Comput. Res. 12(2), 120–126 (2016)Google Scholar
  23. 23.
    Kolmogorov, A.N., Fomin, S.V.: Introductory Real Analysis (translated by R. A. Silverman). Dover Publications, New York (1970)zbMATHGoogle Scholar
  24. 24.
    Levitan, B.M., Sargsjan, I.S.: Sturm–Liouville and Dirac Operators. Mathematics and Its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1991)Google Scholar
  25. 25.
    Naimark, M.A.: Linear Differential Operators, 2nd edn. Nauka, Moscow (1969) (English transl. of 1st edn, 1, 2, New York) (1968)Google Scholar
  26. 26.
    Pospisil, M., Skripkova, L.P.: Sturm’s theorems for conformable fractional differential equations. Math. Commun. 21, 273–281 (2016)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Tasbozan, O., Cenesiz, Y., Kurt, A.: New solutions for conformable fractional Boussinesq and combined KdV–mKdV equations using Jacobi elliptic function expansion method. Eur. Phys. J. Plus (2016).  https://doi.org/10.1140/epjp/i2016-16244-x
  28. 28.
    Thaller, B.: The Dirac Equation. Springer, New York (1992)CrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, Y., Zhou, J., Li, Y.: Fractional Sobolev’s space on time Scalevia conformable fractional calculus and their application to a fractional differential equation on time scale. Adv. Math. Phys. (art. ID 963491) (2016)Google Scholar
  30. 30.
    Weidmann, J.: Spectral theory of ordinary differential operators. In: Lecture Notes in Mathematics, vol. 1258. Springer, Berlin (1987)Google Scholar

Copyright information

© Sociedad Matemática Mexicana 2019

Authors and Affiliations

  1. 1.Department of MathematicsSüleyman Demirel UniversityIspartaTurkey
  2. 2.Department of MathematicsMehmet Akif Ersoy UniversityBurdurTurkey

Personalised recommendations