Advertisement

Hilbert–Kunz multiplicities and F-thresholds

  • Luis Núñez-Betancourt
  • Ilya Smirnov
Original Article

Abstract

Motivated by relations between Hilbert–Samuel multiplicity and F-thresholds, we conjecture an inequality that relates F-thresholds with Hilbert–Kunz multiplicity. In this article, we present several results that support the conjecture. In particular, we prove it for hypersurfaces and we give several consequences of this inequality. In addition, we extend previous results for the Hilbert–Samuel multiplicity.

Mathematics Subject Classification

Primary 13D40 13A35 14B05 

Notes

Acknowledgements

We would like to thank Craig Huneke for valuable discussions. L. Núñez-Betancourt was supported by the NSF Grant DMS 1502282 and the CONACyT (Mexico) Grant \(\#284598.\) I. Smirnov was partially supported by NSF Grant DMS 1259142. We also thank the referee for helpful comments.

References

  1. 1.
    Aberbach, I.M., Enescu, F.: Lower bounds for Hilbert-Kunz multiplicities in local rings of fixed dimension. Mich. Math. J. 57, 1–16 (2008). (special volume in honor of Melvin Hochster)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Benito, A., Faber, E., Smith, K.: Measuring Singularities with Frobenius: The Basics. Springer, New York (2012)zbMATHGoogle Scholar
  3. 3.
    Blickle, M., Enescu, F.: On rings with small Hilbert–Kunz multiplicity. Proc. Am. Math. Soc. 132(9), 2505–2509 (2004). (electronic)MathSciNetCrossRefGoogle Scholar
  4. 4.
    de Fernex, T., Ein, L., Mustaţă, M.: Multiplicities and log canonical threshold. J. Algebraic Geom. 13(3), 603–615 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    De Stefani, A., Núñez-Betancourt, L., Pérez, F.: On the existence of \(F\)-thresholds and related limits. Trans. Am. Math. Soc. 370(9), 6629–6650 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fedder, R.: \(F\)-purity and rational singularity in graded complete intersection rings. Trans. Am. Math. Soc. 301(1), 47–62 (1987)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hara, N., Yoshida, K.-I.: A generalization of tight closure and multiplier ideals. Trans. Am. Math. Soc. 355(8), 3143–3174 (2003). (electronic)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hernández, D.J.: \(F\)-pure thresholds of binomial hypersurfaces. Proc. Am. Math. Soc. 142(7), 2227–2242 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hernández, D.J.: \(F\)-invariants of diagonal hypersurfaces. Proc. Am. Math. Soc. 143(1), 87–104 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hernández, D.J., Betancourt, L.N., Witt, E.E., Zhang, W.: \(F\)-pure thresholds of homogeneous polynomials. Mich. Math. J. 65(1), 57–87 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hernández, D.J., Betancourt, L.N., Witt, E.E.: Local \(m\)-adic constancy of \(F\)-pure thresholds and test ideals. Math. Proc. Camb. Philos. Soc. 164(2), 285–295 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hochster, M., Huneke, C.: Tight closure, invariant theory, and the Briançon–Skoda theorem. J. Am. Math. Soc. 3(1), 31–116 (1990)zbMATHGoogle Scholar
  13. 13.
    Hochster, M., Huneke, C.: \(F\)-regularity, test elements, and smooth base change. Trans. Am. Math. Soc. 346(1), 1–62 (1994)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hochster, M., Huneke, C.: Tight closure of parameter ideals and splitting in module-finite extensions. J. Algebraic Geom. 3(4), 599–670 (1994)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hochster, M., Huneke, C.: Tight closure in equal characteristic zero (1999). Available online at: http://www.math.lsa.umich.edu/~hochster/tcz.pdf
  16. 16.
    Huneke, C.: Commutative Algebra. Hilbert–Kunz multiplicity and the \(F\)-signature, pp. 485–525. Springer, New York (2013)CrossRefGoogle Scholar
  17. 17.
    Huneke, C., Swanson, I.: Integral closure of ideals, rings, and modules. In: London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006)Google Scholar
  18. 18.
    Huneke, C., Mustaţă, M., Takagi, S., Watanabe, K.: F-thresholds, tight closure, integral closure, and multiplicity bounds. Mich. Math. J. 57, 463–483 (2008). (special volume in honor of Melvin Hochster)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Huneke, C., Takagi, S., Watanabe, K.: Multiplicity bounds in graded rings. Kyoto J. Math. 51(1), 127–147 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kunz, E.: On Noetherian rings of characteristic \(p\). Am. J. Math. 98(4), 999–1013 (1976)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Matsumura, H.: Commutative algebra. In: Mathematics Lecture Note Series, vol. 56, 2nd edn. Benjamin/Cummings Publishing Co. Inc., Reading (1980)Google Scholar
  22. 22.
    Monsky, P.: The Hilbert–Kunz function. Math. Ann. 263(1), 43–49 (1983)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mustaţǎ, M., Takagi, S., Watanabe, K.:\( F\)-thresholds and Bernstein–Sato polynomials. In: European congress of mathematics, pp. 341–364. European Mathematical Society, Zürich (2005)Google Scholar
  24. 24.
    Nagata, M.: Interscience Tracts in Pure and Applied Mathematics. Local rings, vol. 13. Interscience Publishers a division of Wiley, New York (1962)Google Scholar
  25. 25.
    Pérez, F.: On the constancy regions for mixed test ideals. J. Algebra 396, 82–97 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Schwede, K.: Test ideals in non-\(\mathbb{Q}\)-Gorenstein rings. Trans. Am. Math. Soc. 363(11), 5925–5941 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Schwede, K., Tucker, K.: Test ideals of non-principal ideals: computations, jumping numbers, alterations and division theorems. J. Math. Pures Appl. 102(5), 891–929 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Takagi, S., Watanabe, K.: On \(F\)-pure thresholds. J. Algebra 282(1), 278–297 (2004)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Watanabe, K., Yoshida, K.: Hilbert–Kunz multiplicity and an inequality between multiplicity and colength. J. Algebra 230(1), 295–317 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Sociedad Matemática Mexicana 2018

Authors and Affiliations

  1. 1.Centro de Investigación en MatemáticasGuanajuatoMexico
  2. 2.Department of MathematicsStockholm UniversityStockholmSweden

Personalised recommendations