Boletín de la Sociedad Matemática Mexicana

, Volume 25, Issue 3, pp 577–588 | Cite as

Some preserving sandwich results of certain operator containing a generalized Mittag-Leffler function

  • M. K. Aouf
  • T. M. SeoudyEmail author
Original Article


In this paper, we obtain subordination, superordination and sandwich-preserving theorems for certain linear operator defined by generalized Mittag-Leffler function.


Analytic function Subordination Superordination Sandwich-type Mittag-Leffler function Convex functions 

Mathematics Subject Classification

Primary 30C45 Secondary 30D30 33D20 



The authors are grateful to the reviewers of this article, that gave valuable comments, in order to revise and improve the content of the paper.


  1. 1.
    Attiyaa, A.A.: Some applications of Mittag-Leffler function in the unit disk. Filomat 30(7), 2075–2081 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gronwall, T. H.: Some remarks on conformal representation. Ann. Math. 16(15), 72–76 (1914)Google Scholar
  3. 3.
    Miller, S.S., Mocanu, P.T.: Differential subordinations and univalent functions. Mich. Math. J. 28(2), 157–172 (1981)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Miller, S.S., Mocanu, P.T.: Univalent solutions of Briot-Bouquet differential equations. J. Differ. Equ. 56(3), 297–309 (1985)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Miller, S.S., Mocanu, P.T.: Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, vol. 225. Marcel Dekker, New York (2000)CrossRefGoogle Scholar
  6. 6.
    Miller, S., Mocanu, P.T.: Subordinants of differential superordinations. Complex Var. Theory Appl. 48(10), 815–826 (2003)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Mittag-Leffler, G.M.: Sur la nouvelle function. C.R. Acad. Sci. Paris 137, 554–558 (1903)zbMATHGoogle Scholar
  8. 8.
    Mittag-Leffler, G.M.: Sur la representation analytique d’une function monogene (cinquieme note). Acta Math. 29, 101–181 (1905)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pommerenke, Ch.: Univalent Functions. Vandenhoeck and Ruprecht, G öttingen (1975)zbMATHGoogle Scholar
  10. 10.
    Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernal. Appl. Math. Comp. 211, 198–210 (2009)CrossRefGoogle Scholar

Copyright information

© Sociedad Matemática Mexicana 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceFayoum UniversityFayoumEgypt
  2. 2.Department of Mathematics, Faculty of ScienceMansoura UniversityMansouraEgypt

Personalised recommendations