Boletín de la Sociedad Matemática Mexicana

, Volume 25, Issue 3, pp 659–672 | Cite as

Nikol’skii inequalities for Lorentz–Zygmund spaces

  • Leo R. Ya. DoktorskiEmail author
  • Dmitrij Gendler
Original Article


Analogs of the Nikol’skii inequality in Lorentz–Zygmund spaces are obtained for functions of the form \(\sum _{k=1}^{n}c_{k}\varphi _{k}\), where \(\left\{ \varphi _{k}\right\} \) is a finite orthonormal system in \(L_2\) bounded in \(L_\infty \). No assumptions about smoothness of considered functions are required. Used technique relies only on the properties of Lorentz–Zygmund spaces and Fourier series map. In addition, real interpolation method is applied.


Nikol’skii inequality Lorentz–Zygmund spaces orthonormal bounded system Fourier series 

Mathematics Subject Classification

41A17 42B05 42B35 42C05 



  1. 1.
    Akishev, G.: Similar to orthogonal system and inequality of different metrics in Lorentz–Zygmung space. Mat. Zh. 13(1), 516 (2013). (Russian)MathSciNetGoogle Scholar
  2. 2.
    Bennett, C., Rudnick, K.: On Lorentz–Zygmund spaces, Diss. Math. 175 (1980)Google Scholar
  3. 3.
    Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)zbMATHGoogle Scholar
  4. 4.
    Besov, O.V., Sadovnichii, V.A., Telyakovskii, S.A.: On the scientific work of S. M. Nikol’skii. Russ. Math. Surv. 60, 1005–1020 (2005)CrossRefGoogle Scholar
  5. 5.
    Ditzian, Z., Prymak, A.: Nikol’skii inequalities for Lorentz spaces. Rocky Mt J. Math. 40(1), 209–223 (2010)CrossRefGoogle Scholar
  6. 6.
    Ditzian, Z., Prymak, A.: On Nikol’skii inequalities for domains in \(R ^d\). Constr. Approx. 44, 23–51 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ditzian, Z., Tikhonov, S.: Ul’yanov and Nikol’skii-type inequalities. J. Approx. Theory 133(1), 100–133 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Doktorskii, R. Ya.: A multiparametric real interpolation method I. Multiparametric interpolation functors, Manuscript No. 6120-B88, deposited at VINITI (1988) (Russian)Google Scholar
  9. 9.
    Doktorskii, R. Ya.: A multiparametric real interpolation method III. Lorentz–Zygmund spaces, Manuscript No. 6070-B88, deposited at VINITI (1988) (Russian)Google Scholar
  10. 10.
    Doktorskii, R. Ya.: A multiparametric real interpolation method IV. Reiteration relations for “limiting” cases \(\eta =0\) and \(\eta =1\), application to the Fourier series theory, Manuscript No. 4637-B89, deposited at VINITI (Russian) (1989)Google Scholar
  11. 11.
    Doktorskii, R. Ya.: Description of the scale of the Lorentz–Zygmund spaces via a multiparametric modification of the real interpolation method. In: Differential and integral equations and their applications, Kalmytsk. Gos. Univ, Elista, 38-48 (1990) (Russian)Google Scholar
  12. 12.
    Doktorskii, R.Ya.: Reiteration relations of the real interpolation method, Soviet. Math. Dokl. 44(3), 665–669 (1992)MathSciNetGoogle Scholar
  13. 13.
    Domínguez, O.: Approximation spaces, limiting interpolation and Besov spaces, Ph. D. Thesis, Madrid, (2017)Google Scholar
  14. 14.
    Evans, W.D., Opic, B., Pick, L.: Real interpolation with logarithmic functors. J. Inequal. Appl. 7(2), 187–269 (2002)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gogatishvili, A., Opic, B., Tikhonov, S., Trebels, W.: Ulyanov-type inequalities between Lorentz–Zygmund spaces. J. Fourier Anal. Appl. 20, 1020–1049 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gogatishvili, A., Opic, B., Trebels, W.: Limiting reiteration for real interpolation with slowly varying functions. Math. Nachr. 278(12), 86–107 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jackson, D.: Certain problems of closest approximation. Bull. Am. Math. Soc. 39, 889–906 (1933)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Merucci, C.: Interpolation réelle avec fonction paramétre: réitération et applications aux espaces \(\Lambda ^{p}(\varphi )\;(0<p\le +\infty )\). C. R. Acad. Sci. Paris, I, 295, 427–430 (1982)Google Scholar
  19. 19.
    Nessel, R.J., Wilmes, G.: Nikol’skii-type inequalities for trigonometric polynomials and entire functions of exponential type. J. Aust. Math. Soc. 25, 718 (1978)CrossRefGoogle Scholar
  20. 20.
    Nikol’skii, S.M.: Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables. Trudy Mat. Inst. Steklov 38, 244–278 (1951). (Russian)MathSciNetGoogle Scholar
  21. 21.
    Nikol’skii, S.M.: Approximation of functions of several variables and imbedding theorems. Springer, Berlin (1975)CrossRefGoogle Scholar
  22. 22.
    Nursultanov, E.D., Ruzhansky, M.V., Tikhonov, S.Yu.: Nikol’skii inequality and functional classes on compact Lie groups. Funct. Anal. Appl. 49(3), 226–229 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Opic, B., Pick, L.: On generalized Lorentz–Zygmund spaces. Math. Inequal. Appl. 2(3), 391–467 (1999)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Sharpley, R.: Counterexamples for classical operators in Lorentz–Zygmund spaces. Studia Math. 68, 141–158 (1980)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sherstneva, L.A.: Nikol’skii’s inequalities for trigonometric polynomials in Lorentz spaces. Mosc. Univ. Math. Bull. 39(4), 7581 (1984)MathSciNetGoogle Scholar
  26. 26.
    Triebel, H.: Interpolation Theory. Function Spaces, Differential Operators, North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  27. 27.
    Triebel, H.: Theory of Function Spaces. Birkhuser, Basel (1983)CrossRefGoogle Scholar

Copyright information

© Sociedad Matemática Mexicana 2018

Authors and Affiliations

  1. 1.Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSBEttlingenGermany

Personalised recommendations