Boletín de la Sociedad Matemática Mexicana

, Volume 25, Issue 3, pp 461–479 | Cite as

Parabolically induced functions and equidistributed pairs

  • Paolo SentinelliEmail author
Original Article


Given a function defined over a parabolic subgroup of a Coxeter group, equidistributed with the length, we give a procedure to construct a function over the entire group, equidistributed with the length. Such a procedure permits to define functions equidistributed with the length in all the finite Coxeter groups. We can establish our results in the general setting of graded posets which satisfy some properties. These results apply to some known functions arising in Coxeter groups as the major index, the negative major index and the D-negative major index defined in type A, B, and D, respectively.


Coxeter groups Mahonian pairs Major index 

Mathematics Subject Classification

05A05 05E15 06A07 20F55 



I would like to thank the anonymous referee for the meticulous revision and for some useful remarks. Supported by Postdoctorado FONDECYT-CONICYT 3160010.


  1. 1.
    Adin, R.M., Brenti, F., Roichman, Y.: Descent numbers and major indices for the hyperoctahedral group. Adv. Appl. Math. 27(2–3), 210–224 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adin, R.M., Brenti, F., Roichman, Y.: Descent representations and multivariate statistics. Trans. Am. Math. Soc. 357(8), 3051–3082 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Adin, R.M., Brenti, F., Roichman, Y.: Equi-distribution over descent classes of the hyperoctahedral group. J. Comb. Theory Ser. A 113(6), 917–933 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Adin, R.M., Roichman, Y.: The flag major index and group actions on polynomial rings. Eur. J. Comb. 22(4), 431–446 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bahls, P.: The isomorphism problem in Coxeter groups. Imperial College Press, London (2005)CrossRefGoogle Scholar
  6. 6.
    Bergeron, F.: Algebraic combinatorics and coinvariant spaces. CRC Press, New York (2009)CrossRefGoogle Scholar
  7. 7.
    Biagioli, R.: Major and descent statistics for the even-signed permutation group. Adv. Appl. Math. 31(1), 163–179 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Biagioli, R.: Equidistribution of negative statistics and quotients of Coxeter groups of type B and D. Adv. Appl. Math. 41(3), 378–394 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Biagioli, R., Caselli, F.: Invariant algebras and major indices for classical Weyl groups. Proc. Lond. Math. Soc. 88(3), 603–631 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics. Springer, Berlin, Heidelberg (2005)zbMATHGoogle Scholar
  11. 11.
    Bóna, M.: Combinatorics of permutations. CRC Press, Boca Raton (2012)zbMATHGoogle Scholar
  12. 12.
    Carnevale, A.: On some Euler–Mahonian distributions. Electron. J. Comb. 24(3), 3–27 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Foata, D., Schützenberger, M.P.: Major index and inversion number of permutations. Math. Nachr. 83(1), 143–159 (1978)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Garsia, A.M., Gessel, I.: Permutation statistics and partitions. Adv. Math. 31(3), 288–305 (1979)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Garsia, A.M., Stanton, D.: Group actions of Stanley–Reisner rings and invariants of permutation groups. Adv. Math. 51, 107–201 (1984)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Humphreys, J.E.: Reflection Groups and Coxeter Group, vol. 29. Cambridge Univ. Press, Cambridge (1990)CrossRefGoogle Scholar
  17. 17.
    Sagan, B.E., Savage, C.D.: Mahonian pairs. J. Comb. Theory Ser. A 119(3), 526–545 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Stanley, R.P.: Enumerative Combinatorics, vol. 1. Wadsworth and Brooks/Cole, Monterey (1986)CrossRefGoogle Scholar

Copyright information

© Sociedad Matemática Mexicana 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de ChileÑuñoaChile

Personalised recommendations