Boletín de la Sociedad Matemática Mexicana

, Volume 25, Issue 3, pp 687–700 | Cite as

Nearly spectral spaces

  • Lorenzo Acosta
  • Ibeth Marcela Rubio PerillaEmail author
Original Article


We study some natural generalizations of spectral spaces in the contexts of commutative rings and distributive lattices. We obtain a topological characterization for the spectra of commutative (not necessarily unitary) rings and we find spectral versions for the up-spectral and down-spectral spaces. We show that the duality between distributive lattices and Balbes–Dwinger spaces is the co-equivalence associated with a pair of contravariant right adjoint functors between suitable categories.


Spectral space Down-spectral space Up-spectral space Stone duality Prime spectrum Distributive lattice Commutative ring 

Mathematics Subject Classification

54H10 54F65 54D35 



We want to thank the referees for their useful comments.


  1. 1.
    Acosta, L.: Temas de teoría de retículos. Universidad Nacional de Colombia (2016)Google Scholar
  2. 2.
    Acosta, L., Rubio, M.: On Nilcompactifications of Prime Spectra of Commutative Rings. Pre-print arXiv:1510.08148
  3. 3.
    Atiyah, M.F., MacDonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Company, Boston (1969)zbMATHGoogle Scholar
  4. 4.
    Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press, Columbia (1974)zbMATHGoogle Scholar
  5. 5.
    Echi, O., Gargouri, R.: An up-spectral space need not be A-spectral. N. Y. J. Math. 10, 271–277 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Echi, O., Gargouri, R., Lazaar, S.: On the Hochster dual of a topological space. Topol. Proc. 32, 153–166 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Echi, O., Lazaar, S.: Sober spaces and sober sets. Missouri J. Math. Sci. 20(1), 60–72 (2008)zbMATHGoogle Scholar
  8. 8.
    Hochster, M.: Prime ideal structure in commutative rings. Trans. Am. Math. Soc. 142, 43–60 (1969)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)zbMATHGoogle Scholar
  10. 10.
    Simmons, H.: Reticulated rings. J. Algebra 66, 169–192 (1980)MathSciNetCrossRefGoogle Scholar

Copyright information

© Sociedad Matemática Mexicana 2018

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations