Boletín de la Sociedad Matemática Mexicana

, Volume 22, Issue 2, pp 711–731 | Cite as

Advantages of the Laplace transform approach in pricing first touch digital options in Lévy-driven models

  • Oleg Kudryavtsev
Original Article


Motivated by the pricing of first touch digital options in exponential Lévy models and corresponding credit risk applications, we study numerical methods for solving related partial integro-differential equations. The goal of the paper is to consider advantages of the Laplace transform-based approach in this context. In particular, we show that the computational efficiency of the numerical methods which start with the time discretization can be significantly enhanced (often, in several dozen of times) by means of the Laplace transform technique. As an additional result, we provide a new Wiener–Hopf factorization formula which admits an efficient numerical realization by means of the Fast Fourier Transform. We propose two new efficient methods for pricing first touch digital options in wide classes of Lévy processes. Both methods are based on the numerical Laplace transform inversion formulae and a numerical Wiener–Hopf factorization. The first method uses the Gaver–Stehfest algorithm, the second one deals with the Post–Widder formula. We prove the advantages of the new methods in terms of accuracy and convergence by using numerical experiments.


Jump processes Factorization theory Laplace transform Computational methods Mathematical finance First passage probabilities 

Mathematics Subject Classification

60G51 62P05 60-08 60J75 47A68 42A85 



The author is grateful to participants of The International Workshop “Wiener–Hopf method, Toeplitz operators and their application”, Veracruz, Mexico, November 3–7, 2015, and especially to Professor Sergei Grudsky for discussions and useful comments.


  1. 1.
    Abate, J., Whitt, W.: Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 7, 36–43 (1995)CrossRefzbMATHGoogle Scholar
  2. 2.
    Abate, J., Whitt, W.: A unified framework for numerically inverting Laplace transforms. INFORMS J. Comput. 18(4), 408–421 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bakshia, G., Panayotov, G.: First-passage probability. Jump models, and intra-horizon risk. J. Financ. Econom. 95(1), 20–40 (2010)CrossRefGoogle Scholar
  4. 4.
    Barndorff-Nielsen, O.E.: Processes of normal inverse Gaussian type. Financ. Stoch. 2, 41–68 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barndorff-Nielsen, O.E., Levendorskiǐ, S.Z.: Feller processes of normal inverse Gaussian type. Quant. Financ. 1, 318–331 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyarchenko, S.I., Levendorskiǐ, S.Z.: Option pricing for truncated Lévy processes. Int. J. Theor. Appl. Financ. 3, 549–552 (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Boyarchenko, S.I., Levendorskiǐ, S.Z.: Non-Gaussian Merton–Black–Scholes Theory. World Scientific, Singapore (2002)Google Scholar
  8. 8.
    Boyarchenko, S.I., Levendorskiǐ, S.Z.: American options: the EPV pricing model. Ann. Financ. 1(3), 267–292 (2005)Google Scholar
  9. 9.
    Carr, P.: Randomization and the American put. Rev. Financ. Stud. 11, 597–626 (1998)CrossRefGoogle Scholar
  10. 10.
    Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–332 (2002)CrossRefGoogle Scholar
  11. 11.
    Cont, R. (ed.) Encyclopedia of Quantitative Finance. Wiley, New York (2010)Google Scholar
  12. 12.
    Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC Press, London (2004)Google Scholar
  13. 13.
    Cont, R., Voltchkova, E.: A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal. 43(4), 1596–1626 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Crosby, J., Le Saux, N., Mijatović, A.: Approximating general classes of Lévy processes by hyperexponential jump-diffusion processes. Int. J. Theor. Appl. Financ. 1, 63–91 (2008)zbMATHGoogle Scholar
  15. 15.
    Eberlein, E., Keller, U.: Hyperbolic distributions in finance. Bernoulli 1, 281–299 (1995)CrossRefzbMATHGoogle Scholar
  16. 16.
    Eberlein, E., Keller, U., Prause, K.: New insights into smile, mispricing and value at risk: the hyperbolic model. J. Bus. 71, 371–406 (1998)CrossRefGoogle Scholar
  17. 17.
    Feng, L., Linetsky, V.: Pricing discretely monitored barrier options and defaultable bonds in Lévy process models: a fast Hilbert transform approach. Math. Financ. 18, 337–384 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Grudsky, S.M.: Double barrier options under Lévy processes in modern operator theory and applications, vol. 170. In: Erusalimsky, Y.M., Gohberg, I., Grudsky, S.M., Rabinovich, V., Vasilevski, N. (eds.) Operator Theory: Advances and Applications, pp. 107–135 . Birkh\(\ddot{a}\)user, Basel (2007)Google Scholar
  19. 19.
    Jackson, K.R., Jaimungal, S., Surkov, V.: Fourier space time-stepping for option pricing with Levy models. J. Comput. Financ. 12(2), 1–29 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jagerman, D.L.: An inversion technique for the Laplace transform with applications. Bell Syst. Tech. J. 57, 669–710 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jagerman, D.L.: An inversion technique for the Laplace transform. Bell Syst. Tech. J. 61, 1995–2002 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Jeannin, M., Pistorius, M.: A transform approach to compute prices and greeks of barrier options driven by a class of Lévy processes. Quant. Financ. 10(6), 629–644 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Koponen, I.: Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E 52, 1197–1199 (1995)CrossRefGoogle Scholar
  24. 24.
    Kou, S.G.: A jump-diffusion model for option pricing. Manage. Sci. 48, 1086–1101 (2002)CrossRefzbMATHGoogle Scholar
  25. 25.
    Kou, S., Wang, H.: First passage times of a jump diffusion process. Adv. Appl. Probab. 35, 504–531 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kudryavtsev, O., Levendorskiǐ, S.Z.: Pricing of first touch digitals under normal inverse Gaussian processes. Int. J. Theor. Appl. Financ. 9(6), 915–949 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kudryavtsev, O., Levendorskiǐ S.Z.: Fast and accurate pricing of barrier options under Levy processes. Finan. Stoch. 13(4), 531–562 (2009)Google Scholar
  28. 28.
    Kudryavtsev, O.: An efficient numerical method to solve a special cass of integro-differential equations relating to the Levy models. Math. Models Comput. Simul. 3(6), 706–711 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kudryavtsev, O.: Finite difference methods for option pricing under Levy processes: Wiener–Hopf factorization approach. Sci. World J. 2013(article ID 963625) (2013)Google Scholar
  30. 30.
    Kudryavtsev, O., Zanette, A.: Efficient pricing of swing options in Lévy-driven models. Quant. Financ. 13(4), 627–635 (2013)Google Scholar
  31. 31.
    Kyprianou, A.E., Pistorius, M.R.: Perpetual options and Canadization through fluctuation theory. Ann. Appl. Probab. 13, 1077–1098 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Levendorskiǐ, S.Z., Kudryavtsev, O., Zherder, V.: The relative efficiency of numerical methods for pricing American options under Lévy processes. J. Comput. Financ. 9(2), 69–97 (2006)CrossRefGoogle Scholar
  33. 33.
    Lipton, A.: Assets with jumps. Risk Mag. 15, 149–153 (2002)Google Scholar
  34. 34.
    Madan, D.B., Carr, P., Chang, E.C.: The variance Gamma process and option pricing. Eur. Financ. Rev. 2, 79–105 (1998)CrossRefzbMATHGoogle Scholar
  35. 35.
    Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992).
  36. 36.
    Rothe, E.: Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensinaler Randwerttaufgaben. Math. Ann. 102 (1930)Google Scholar
  37. 37.
    Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  38. 38.
    Sepp, A.: Analytical pricing of double-barrier options under a double-exponential jump diffusion process: applications of Laplace transform. Int. J. Theor. Appl. Financ. 7(2), 151–175 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Valko, P.P., Abate, J.: Comparison of sequence accelerators for the Gaver method of numerical Laplace transform inversion. Comput. Math. Appl. 48, 629–636 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedad Matemática Mexicana 2016

Authors and Affiliations

  1. 1.Department of InformaticsRussian Customs Academy Rostov BranchRostov-on-DonRussia

Personalised recommendations