Boletín de la Sociedad Matemática Mexicana

, Volume 20, Issue 2, pp 335–362 | Cite as

Exceptional surgeries on knots with exceptional classes

Original Article

Abstract

We survey the aspects of classical combinatorial sutured manifold theory and show how they can be adapted to study exceptional Dehn fillings and 2-handle additions. As a consequence, we show that if a hyperbolic knot \(\beta \) in a compact, orientable, hyperbolic 3-manifold, \(M\) has the property that winding number and wrapping number are not equal with respect to a non-trivial class in \(H_2(M,\partial M)\), and then, with only a few possible exceptions, every 3-manifold \(M'\) obtained by Dehn surgery on \(\beta \) with surgery distance \(\Delta \ge 2\) will be hyperbolic.

Keywords

3-Manifold Dehn surgery Sutured manifold 

Mathematics Subject Classification (2000)

57-01 57M50 

References

  1. 1.
    Agol, I.: Bounds on exceptional Dehn filling. Geom. Topol. 4, 431–449 (2000). doi:10.2140/gt.2000.4.431 CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Boyer, S., Zhang, X.: Reducing Dehn filling and toroidal Dehn filling. Topol. Appl. 68(3), 285–303 (1996). doi:10.1016/0166-8641(95)00061-5 CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Canary, R.D., McCullough, D.: Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups. Mem. Amer. Math. Soc. 172(812), xii+218 (2004)Google Scholar
  4. 4.
    Casson, A.J., Gordon, C. McA.: Reducing Heegaard splittings. Topol. Appl. 27(3), 275–283 (1987). doi:10.1016/0166-8641(87)90092-7
  5. 5.
    Culler, M., Gordon, C.McA., Luecke, J., Shalen, P.B.: Dehn surgery on knots. Ann. Math. (2) 125(2), 237–300 (1987). doi:10.2307/1971311
  6. 6.
    Eudave-Muñoz, M.: Non-hyperbolic manifolds obtained by Dehn surgery on hyperbolic knots, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, pp. 35–61. American Mathematical Society, Providence (1997)Google Scholar
  7. 7.
    Gabai, D.: Foliations and the topology of 3-manifolds. J. Differ. Geom. 18(3), 445–503 (1983)MATHMathSciNetGoogle Scholar
  8. 8.
    Gabai, D.: Foliations and the topology of 3-manifolds, II. J. Differ. Geom. 26(3), 461–478 (1987)MATHMathSciNetGoogle Scholar
  9. 9.
    Gabai, D.: Foliations and the topology of 3-manifolds, III. J. Differ. Geom. 26(3), 479–536 (1987)MATHMathSciNetGoogle Scholar
  10. 10.
    González-Acuña, F., Short, H.: Knot surgery and primeness. Math. Proc. Cambridge Philos. Soc. 99(1), 89–102 (1986). doi:10.1017/S0305004100063969
  11. 11.
    Gordon, C.McA.: Dehn filling: a survey. In: Knot theory, vol. 42, pp. 129–144 (Warsaw, 1995) Banach Center Publications, Polish Acad. Sci. Inst. Math., Warsaw (1998)Google Scholar
  12. 12.
    Gordon, C.McA.: Boundary slopes of punctured tori in 3-manifolds. Trans. Amer. Math. Soc. 350(5), 1713–1790 (1998). doi:10.1090/S0002-9947-98-01763-2
  13. 13.
    Gordon, C.: Dehn surgery and 3-manifolds. In: Low Dimensional Topology, IAS/Park City Math. Ser., vol. 15, pp 21–71. American Mathematical Society, Providence, RI (2009)Google Scholar
  14. 14.
    Gordon, C.McA., Litherland R.A.: Incompressible planar surfaces in 3-manifolds. Topol. Appl. 18(2–3), 121–144 (1984). doi:10.1016/0166-8641(84)90005-1
  15. 15.
    Gordon, C.McA., Luecke, J.: Only integral Dehn surgeries can yield reducible manifolds. Math. Proc. Cambridge Philos. Soc. 102(1), 97–101 (1987). doi:10.1017/S0305004100067086
  16. 16.
    Gordon, C.McA., Luecke, J.: Knots are determined by their complements. J. Amer. Math. Soc. 2(2), 371–415 (1989). doi:10.2307/1990979
  17. 17.
    Gordon, C.McA., Luecke, J.: Dehn surgeries on knots creating essential tori. I. Comm. Anal. Geom. 3(3–4), 597–644 (1995)Google Scholar
  18. 18.
    Gordon, C.McA., Luecke, J.: Reducible manifolds and Dehn surgery. Topology 35(2), 385–409 (1996). doi:10.1016/0040-9383(95)00016-X
  19. 19.
    Gordon, C.McA., Luecke, J.: Dehn surgeries on knots creating essential tori. II. Comm. Anal. Geom. 8(4), 671–725 (2000)Google Scholar
  20. 20.
    Gordon, C.McA., Luecke, J.: Non-integral toroidal Dehn surgeries. Comm. Anal. Geom. 12(1–2), 417–485 (2004)Google Scholar
  21. 21.
    Gordon, C.McA., Wu, Y.-Q.: Toroidal Dehn fillings on hyperbolic 3-manifolds. Mem. Amer. Math. Soc. 194(909), vi+140 (2008)Google Scholar
  22. 22.
    Hayashi, C., Shimokawa, K.: Thin position of a pair (3-manifold, 1-submanifold). Pac. J. Math. 197(2), 301–324 (2001). doi:10.2140/pjm.2001.197.301 CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Hayashi, C., Shimokawa, K.: Heegaard splittings of trivial arcs in compression bodies. J. Knot Theory Ramif. 10(1), 71–87 (2001). doi:10.1142/S021821650100069X CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Jaco, W.: Lectures on three-manifold topology. In: CBMS Regional Conference Series in Mathematics, vol. 43. American Mathematical Society, Providence, R.I. (1980)Google Scholar
  25. 25.
    Kang, S.: Reducible and toroidal Dehn fillings with distance 3. Topology 47(5), 277–315 (2008). doi:10.1016/j.top.2007.03.006 CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Lackenby, M.: Surfaces, surgery and unknotting operations. Math. Ann. 308(4), 615–632 (1997). doi:10.1007/s002080050093 CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Lackenby, M.: Dehn surgery on knots in 3-manifolds. J. Amer. Math. Soc. 10(4), 835–864 (1997). doi:10.1090/S0894-0347-97-00241-5 CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Lackenby, M.: Word hyperbolic Dehn surgery. Invent. Math. 140(2), 243–282 (2000). doi:10.1007/s002220000047
  29. 29.
    Lackenby, M., Meyerhoff, R.: The maximal number of exceptional Dehn surgeries. Invent. Math. 191(2), 341–382 (2013). doi:10.1007/s00222-012-0395-2 CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Lee, S., Oh, S., Teragaito M.: Reducing Dehn fillings and small surfaces. Proc. Lond. Math. Soc. (3) 92(1), 203–223 (2006). doi:10.1017/S002461150501542X
  31. 31.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. (2003). arXiv:math/0211159v1[math.DG].
  32. 32.
    Perelman, G.: Ricci flow with surgery on 3-manifolds. (2003). arXiv:math/0303109v1[math.DG]
  33. 33.
    Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain 3-manifolds. (2002). arXiv:math/0307245v1[math.DG]
  34. 34.
    Scharlemann, M.: Smooth spheres in R\(^4\) with four critical points are standard. Invent. Math. 79(1), 125–141 (1985). doi: 10.1007/BF01388659 CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Scharlemann, M.: Unknotting number one knots are prime. Invent. Math. 82(1), 37–55 (1985). doi:10.1007/BF01394778 CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Scharlemann, M.: Sutured manifolds and generalized Thurston norms. J. Differ. Geom. 29(3), 557–614 (1989)MATHMathSciNetGoogle Scholar
  37. 37.
    Scharlemann, M.: Producing reducible 3-manifolds by surgery on a knot. Topology 29(4), 481–500 (1990). doi:10.1016/0040-9383(90)90017-E CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Scharlemann, M.: Lectures on the theory of sutured 3-manifolds. In: Algebra and Topology (Taejon, 1990). Korea Adv. Inst. Sci. Tech. Taejon, pp. 25–45 (1990)Google Scholar
  39. 39.
    Scharlemann, M., Thompson, A.: Heegaard splittings of (surface) \(\times \) I are standard. Math. Ann. 295(3), 549–564 (1993). doi: 10.1007/BF01444902 CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Taylor, S.A.: Boring split links. Pac. J. Math. 241(1), 127–167 (2009). doi:10.2140/pjm.2009.241.127
  41. 41.
    Taylor, S.A.: Band-taut sutured manifolds. Algebra Geom. Topol. 14 (2014). doi:10.2140/agt.2014.14.157
  42. 42.
    Taylor, S.A.: Comparing 2-handle additions to a genus 2 boundary component. Trans. Amer. Math. Soc. 366 (2014). arXiv:0806.1572.
  43. 43.
    Thurston, W.P.: Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. (N.S.) 6(3), 357–381 (1982). doi:10.1090/S0273-0979-1982-15003-0
  44. 44.
    Valdez-Sánchez, L.G.: Toroidal and Klein bottle boundary slopes. Topol Appl. 154(3), 584–603 (2007). doi:10.1016/j.topol.2006.08.001 CrossRefMATHGoogle Scholar
  45. 45.
    Wu, Y.-Q.: Sutured manifold hierarchies, essential laminations, and Dehn surgery. J. Differ. Geom. 48(3), 407–437 (1998)MATHGoogle Scholar

Copyright information

© Sociedad Matemática Mexicana 2014

Authors and Affiliations

  1. 1.Colby CollegeWatervilleUSA

Personalised recommendations