Advertisement

Listeria monocytogenes Cancer Vaccines: Bridging Innate and Adaptive Immunity

  • Zachary T. Morrow
  • Zachary M. Powers
  • John-Demian SauerEmail author
Microbial Anti-cancer Therapy and Prevention (PJF Rider, L Sweeny, and KG Kousoulas, Section Editors)
  • 20 Downloads
Part of the following topical collections:
  1. Topical Collection on Microbial Anti-cancer Therapy and Prevention

Abstract

Purpose of Review

Immunotherapy has emerged as a promising cancer treatment; however, success in only select clinical indications underscores the need for novel approaches. Recently Listeria monocytogenes–based vaccines have been developed to drive tumor-specific T cell responses. Here, we discuss recent preclinical studies using L. monocytogenes vaccines, innate immune pathways that influence T cell priming, and new vaccine strategies in clinical trials.

Recent Findings

Recent studies indicate that in addition to inducing antigen-specific T cell responses, L. monocytogenes vaccines remodel the TME. In addition, several innate immune pathways influence adaptive immune responses to L. monocytogenes and modulating these pathways holds promise to enhance antitumor T cell responses.

Summary

The interplay between innate and adaptive immune responses to L. monocytogenes is poorly understood. Understanding these interactions will facilitate the design of better anti-cancer vaccines and improved use of combination therapies.

Keywords

Listeria monocytogenes Immunotherapy Cancer vaccines Innate immunity Adaptive immunity Tumor microenvironment 

Notes

Funding Information

This study was supported by grant R01 CA188034 from the National Institutes of Health (JDS). In addition, this material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program (Z.T.M) under Grant No. DGE-1747503. Support was also provided by the Graduate School and the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison with funding from the Wisconsin Alumni Research Foundation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 2016;39:44–51.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Spitzer MH, Carmi Y, Reticker-Flynn NE, et al. Systemic immunity is required for effective cancer immunotherapy. Cell. 2017;168:487–502.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Davis RJ, Van Waes C, Allen CT. Overcoming barriers to effective immunotherapy: MDSCs, TAMs, and Tregs as mediators of the immunosuppressive microenvironment in head and neck cancer. Oral Oncol. 2016;58:59–70.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Carretero-González A, Lora D, Ghanem I, Zugazagoitia J, Castellano D, Sepúlveda JM, et al. Analysis of response rate with anti-PD1/PDL1 antibodies in advanced solid tumors: a meta-analysis of randomized clinical trials (RCT). J Clin Oncol. 2018;35:8706–15.CrossRefGoogle Scholar
  5. 5.
    Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Fousek K, Ahmed N. The evolution of T-cell therapies for solid malignancies. Clin Cancer Res. 2015;21:3384–92.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ahmed N, Brawley VS, Hegde M, et al. Human epidermal growth factor receptor 2 (HER2) - specific chimeric antigen receptor - modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33:1688–96.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Feng K, Guo Y, Dai H, Wang Y, Li X, Jia H, et al. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci China Life Sci. 2016;59:468–79.PubMedCrossRefGoogle Scholar
  9. 9.
    Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am J Med Sci. 1893;10:487–511.CrossRefGoogle Scholar
  10. 10.
    Herr HW, Morales A. History of Bacillus Calmette-Guerin and bladder cancer: an immunotherapy success story. J Urol. 2008;179:53–6.PubMedCrossRefGoogle Scholar
  11. 11.
    National Institute of Health. Home - ClinicalTrials.gov. US Natl Libr Med. 2018.  https://doi.org/10.1242/jeb.083188.PubMedCrossRefGoogle Scholar
  12. 12.
    Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ. Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot. 2014;77:150–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Mengaud J, Ohayon H, Gounon P, Mege RM, Cossart P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell. 1996;84:923–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Shen Y, Naujokas M, Park M, Ireton K. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell. 2000;103:501–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Smith GA, Marquis H, Jones S, Johnston NC, Portnoy DA, Goldfine H. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun. 1995;63:4231–7.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hamon MA, Ribet D, Stavru F, Cossart P. Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol. 2012;20:360–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P, et al. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell. 1992;68:521–31.PubMedCrossRefGoogle Scholar
  18. 18.
    de Chastellier C, Berche P. Fate of Listeria monocytogenes in murine macrophages: evidence for simultaneous killing and survival of intracellular bacteria. Infect Immun. 1994;62:543–53.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Zenewicz LA, Shen H. Innate and adaptive immune responses to Listeria monocytogenes: a short overview. Microbes Infect. 2007;9:1208–15.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Brunt LM, Portnoy DA, Unanue ER. Presentation of Listeria monocytogenes to CD8+ T cells requires secretion of hemolysin and intracellular bacterial growth. J Immunol. 1990;145:3540–6.PubMedGoogle Scholar
  21. 21.
    Ikonomidis G, Paterson Y, Kos FJ, Portnoy DA. Delivery of a viral antigen to the class i processing and presentation pathway by listeria monocytogenes. J Exp Med. 1994;180:2209–18.PubMedCrossRefGoogle Scholar
  22. 22.
    Bahjat KS, Liu W, Lemmens EE, Schoenberger SP, Portnoy DA, Dubensky TW, et al. Cytosolic entry controls CD8+-T-cell potency during bacterial infection. Infect Immun. 2006;74:6387–97.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bahjat KS, Meyer-Morse N, Lemmens EE, Shugart JA, Dubensky TW, Brockstedt DG, et al. Suppression of cell-mediated immunity following recognition of phagosome-confined bacteria. PLoS Pathog. 2009;5:e1000568.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Shen H, Miller JF, Fan X, Kolwyck D, Ahmed R, Harty JT. Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity. Cell. 1998;92:535–45.PubMedCrossRefGoogle Scholar
  25. 25.
    Alpuche-Aranda CM, Racoosin EL, Swanson JA, Miller SI. Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J Exp Med. 1994;179:601–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Radoshevich L, Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol. 2018;16:32–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Flickinger J, Rodeck U, Snook A. Listeria monocytogenes as a vector for cancer immunotherapy: current understanding and progress. Vaccines. 2018;6:48.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Brocksted DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W, et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A. 2004;101:13832–7.Google Scholar
  29. 29.
    Starks H, Bruhn KW, Shen H, et al. Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J Immunol. 2004;173:420–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Wallecha A, Maciag PC, Rivera S, Paterson Y, Shahabi V. Construction and characterization of an attenuated Listeria monocytogenes strain for clinical use in cancer immunotherapy. Clin Vaccine Immunol. 2009;16:96–103.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lauer P, Chow MYN, Loessner MJ, Portnoy DA, Calendar R. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol. 2002;184:4177–86.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gunn GR, Zubair A, Peters C, Pan Z-KZ-K WT-CT-C, Paterson Y. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortal. J Immunol. 2001;167:6471–9.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wood LM, Pan ZK, Shahabi V, Paterson Y. Listeria-derived ActA is an effective adjuvant for primary and metastatic tumor immunotherapy. Cancer Immunol Immunother. 2010;59:1049–58.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Jin MP, Ng VH, Maeda S, Rest RF, Karin M. Anthrolysin O and other gram-positive cytolysins are toll-like receptor 4 agonists. J Exp Med. 2004;200:1647–55.CrossRefGoogle Scholar
  35. 35.
    Souders NC, Sewell DA, Pan ZK, Hussain SF, Rodriguez A, Wallecha A, et al. Listeria-based vaccines can overcome tolerance by expanding low avidity CD8+ T cells capable of eradicating a solid tumor in a transgenic mouse model of cancer. Cancer Immun. 2007;7:2.Google Scholar
  36. 36.
    Sewell DA, Pan ZK, Paterson Y. Listeria-based HPV-16 E7 vaccines limit autochthonous tumor growth in a transgenic mouse model for HPV-16 transformed tumors. Vaccine. 2008;26:5315–20.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Port GC, Freitag NE. Identification of novel Listeria monocytogenes secreted virulence factors following mutational activation of the central virulence regulator, PrfA. Infect Immun. 2007;75:5886–97.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zhao H, Liao X, Kang Y. Tregs: where we are and what comes next? Front Immunol. 2017;8:1578.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gabrilovich DI. Myeloid-Derived Suppressor Cells. Cancer Immunol Res. 2017;5:3–8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    •• Deng W, Lira V, Hudson TE, et al. Recombinant Listeria promotes tumor rejection by CD8 + T cell-dependent remodeling of the tumor microenvironment. Proc Natl Acad Sci U S A. 2018;115:8179–84 This study describes mechanisms of howL. monocytogenesvaccines modify the tumor microenvironment in both antigen-specific and non-specific ways. Importantly, the group shows thatL. monocytogenesvaccines are particularly effective in comparison with other therapeutic modalities in part, due to the effects on the TME. PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Shrimali R, Ahmad S, Berrong Z, Okoev G, Matevosyan A, Razavi GSE, et al. Agonist anti-GITR antibody significantly enhances the therapeutic efficacy of Listeria monocytogenes-based immunotherapy. J Immunother Cancer. 2017;5:1–9.  https://doi.org/10.1186/s40425-017-0266-x.
  42. 42.
    Mkrtichyan M, Chong N, Eid RA, Wallecha A, Singh R, Rothman J, et al. Anti-PD-1 antibody significantly increases therapeutic efficacy of Listeria monocytogenes (Lm)-LLO immunotherapy. J Immunother Cancer. 2013;1:15.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Olino K, Wada S, Edil BH, Pan X, Meckel K, Weber W, et al. Tumor-associated antigen expressing listeria monocytogenes induces effective primary and memory T-cell responses against hepatic colorectal cancer metastases. Ann Surg Oncol. 2012;19:597–607.  https://doi.org/10.1245/s10434-011-2037-0.PubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lizotte PH, Baird JR, Stevens CA, Lauer P, Green WR, Brockstedt DG, et al. Attenuated Listeria monocytogenes reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis. Oncoimmunology. 2014;3:e28926.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Chandra D, Quispe-Tintaya W, Jahangir A, Asafu-Adjei D, Ramos I, Sintim HO, et al. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Cancer Immunol Res. 2014;2:901–10.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Keenan BP, Saenger Y, Kafrouni MI, et al. A listeria vaccine and depletion of t-regulatory cells activate immunity against early stage pancreatic intraepithelial neoplasms and prolong survival of mice. Gastroenterology. 2014;146:1784–94.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF, Maitra A, et al. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2016;30:355–85.CrossRefGoogle Scholar
  48. 48.
    Kim VM, Blair AB, Lauer P, et al. Anti-pancreatic tumor efficacy of a Listeria-based, Annexin A2-targeting immunotherapy in combination with anti-PD-1 antibodies. J Immunother Cancer. 2019;7:132.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Singh R, Paterson Y. In the FVB/N HER-2/neu transgenic mouse both peripheral and central tolerance limit the immune response targeting HER-2/neu induced by Listeria monocytogenes-based vaccines. Cancer Immunol Immunother. 2007;56:927–38.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bruhn KW, Craft N, Nguyen BD, Yip J, Miller JF. Characterization of anti-self CD8 T-cell responses stimulated by recombinant Listeria monocytogenes expressing the melanoma antigen TRP-2. Vaccine. 2005;23:4263–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Johnson LE, Brockstedt D, Leong M, Lauer P, Theisen E, Sauer JD, et al. Heterologous vaccination targeting prostatic acid phosphatase (PAP) using DNA and Listeria vaccines elicits superior anti-tumor immunity dependent on CD4+ T cells elicited by DNA priming. Oncoimmunology. 2018;7:e1456603.Google Scholar
  52. 52.
    Lim JY, Brockstedt DG, Lord EM, Gerber SA. Radiation therapy combined with Listeria monocytogenes-based cancer vaccine synergize to enhance tumor control in the B16 melanoma model. Oncoimmunology. 2014;3:e29028.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hannan R, Zhang H, Wallecha A, Singh R, Liu L, Cohen P, et al. Combined immunotherapy with Listeria monocytogenes-based PSA vaccine and radiation therapy leads to a therapeutic response in a murine model of prostate cancer. Cancer Immunol Immunother. 2012;61:2227–38.PubMedCrossRefGoogle Scholar
  54. 54.
    Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11:39.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Yarchoan M, Johnson BA, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 2017;17:209–22.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Maciag PC, Radulovic S, Rothman J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine. 2009;27:3975–83.PubMedCrossRefGoogle Scholar
  57. 57.
    Le DT, Ko AH, Wainberg ZA, et al. Results from a phase 2b, randomized, multicenter study of GVAX pancreas and CRS-207 compared to chemotherapy in adults with previously-treated metastatic pancreatic adenocarcinoma (ECLIPSE Study). J Clin Oncol. 2017;35:345–5.Google Scholar
  58. 58.
    Le DT, Brockstedt DG, Nir-Paz R, et al. A live-attenuated listeria vaccine (ANZ-100) and a live-attenuated listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin Cancer Res. 2012;18:858–68.PubMedCrossRefGoogle Scholar
  59. 59.
    Basu P, Mehta A, Jain M, Gupta S, Nagarkar RV, John S, et al. A randomized phase 2 study of ADXS11-001 Listeria monocytogenes-listeriolysin O immunotherapy with or without cisplatin in treatment of advanced cervical cancer. Int J Gynecol Cancer. 2018;28:764–72.CrossRefGoogle Scholar
  60. 60.
    Denham JD, Lee DH, Castro M, Pandya S, Aslam S, Nanjappa S, et al. Two cases of disseminated infection following live organism anti-cancer vaccine administration in cancer patients. Int J Infect Dis. 2018;72:1–2.PubMedCrossRefGoogle Scholar
  61. 61.
    Hanson WG, Benanti EL, Lemmens EE, et al. A potent and effective suicidal Listeria vaccine platform. Infect Immun. 2019;87:e00144–19.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Witte CE, Archer KA, Rae CS, Sauer JD, Woodward JJ, Portnoy DA. Innate immune pathways triggered by listeria monocytogenes and their role in the induction of cell-mediated immunity. Adv Immunol. 2012:135–56.Google Scholar
  63. 63.
    Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J Exp Med. 2007;204:1891–900.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Torres D, Barrier M, Bihl F, Quesniaux VJF, Maillet I, Akira S, et al. Toll-like receptor 2 is required for optimal control of Listeria monocytogenes infection. Infect Immun. 2004;72:2131–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Way SS, Kollmann TR, Hajjar AM, Wilson CB. Cutting edge: protective cell-mediated immunity to Listeria monocytogenes in the absence of myeloid differentiation factor 88. J Immunol. 2003;171:533–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Tam MA, Wick MJ. MyD88 and interferon-α/β are differentially required for dendritic cell maturation but dispensable for development of protective memory against Listeria. Immunology. 2009;128:429–38.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    • Archer KA, Durack J, Portnoy DA. STING-dependent type I IFN production inhibits cell-mediated immunity to Listeria monocytogenes. PLoS Pathog. 2014;10:1003861 This study examines how STING-dependent type I interferon negatively impacts the generation of antigen-specific T cell responses toL. monocytogenesinfection. CrossRefGoogle Scholar
  68. 68.
    O’Riordan M, Yi CH, Gonzales R, Lee KD, Portnoy DA. Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc Natl Acad Sci U S A. 2002;99:13861–6.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Welsh RM, Bahl K, Marshall HD, Urban SL. Type 1 interferons and antiviral CD8 T-cell responses. PLoS Pathog. 2012;8:e1002352.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Woodward JJ, Lavarone AT, Portnoy DA. C-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science. 2010;328:1703–5.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sauer JD, Sotelo-Troha K, von Moltke J, Monroe KM, Rae CS, Brubaker SW, et al. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect Immun. 2011;79:688–94.Google Scholar
  72. 72.
    Hansen K, Prabakaran T, Laustsen A, et al. Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway. EMBO J. 2014;33:1654–66.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, et al. Chemokine expression in melanoma metastases associated with CD8 + T-CeII recruitment. Cancer Res. 2009;69:3077–85.PubMedCrossRefGoogle Scholar
  74. 74.
    Song S, Peng P, Tang Z, et al. Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Sci Rep. 2017;7:39858.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Fu J, Kanne DB, Leong M, et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med. 2015;7:283ra52.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Corrales L, Gajewski TF. Endogenous and pharmacologic targeting of the STING pathway in cancer immunotherapy. Cytokine. 2016;77:245–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Carrero JA, Calderon B, Unanue ER. Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J Exp Med. 2004;200:535–40.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Dikopoulos N, Bertoletti A, Kröger A, Hauser H, Schirmbeck R, Reimann J. Type I IFN negatively regulates CD8 + T cell responses through IL-10-producing CD4 + T regulatory 1 cells. J Immunol. 2005;174:99–109.PubMedCrossRefGoogle Scholar
  79. 79.
    • Sivick KE, Desbien AL, Glickman LH, et al. Magnitude of therapeutic STING activation determines CD8 + T cell-mediated anti-tumor immunity. Cell Rep. 2018;25:3074–85 This study demonstrates that the magnitude and location (i.e., systemic vs local) of STING-activation are critical for shaping T cell responses in tumors. PubMedCrossRefGoogle Scholar
  80. 80.
    Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440:228–32.PubMedCrossRefGoogle Scholar
  81. 81.
    Kanneganti TD, Özören N, Body-Malapel M, et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature. 2006;440:233–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Wu J, Fernandes-Alnemri T, Alnemri ES. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J Clin Immunol. 2010;30:693–702.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kim S, Bauernfeind F, Ablasser A, Hartmann G, Fitzgerald KA, Latz E, et al. Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur J Immunol. 2010;40:1545–51.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Sauer JD, Witte CE, Zemansky J, Hanson B, Lauer P, Portnoy DA. Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe. 2010;7:412–9.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Theisen E, Sauer JD. Listeria monocytogenes and the inflammasome: from cytosolic bacteriolysis to tumor immunotherapy. Curr Top Microbiol Immunol. 2016;397:133–60.PubMedPubMedCentralGoogle Scholar
  86. 86.
    McDougal C, Sauer JD. Listeria monocytogenes: the impact of cell death on infection and immunity. Pathogens. 2018;7:8.PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Franchi L, Park JH, Shaw MH, Marina-Garcia N, Chen G, Kim YG, et al. Intracellular NOD-like receptors in innate immunity, infection and disease. Cell Microbiol. 2008;10:1–8.Google Scholar
  88. 88.
    von Moltke J, Trinidad NJ, Moayeri M, et al. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature. 2012;490:107–11.CrossRefGoogle Scholar
  89. 89.
    von Moltke J, Ayres JS, Kofoed EM, Chavarría-Smith J, Vance RE. Recognition of bacteria by inflammasomes. Annu Rev Immunol. 2013;31:73–106.CrossRefGoogle Scholar
  90. 90.
    Sauer JD, Pereyre S, Archer KA, Burke TP, Hanson B, Lauer P, Portnoy DA (2011) Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are. poor inducers of protective immunity. Proc Natl Acad Sci U S A 108:12419–24.CrossRefGoogle Scholar
  91. 91.
    •• Theisen E, Sauer JD. Listeria monocytogenes-induced cell death inhibits the generation of cell-mediated immunity. Infect Immunol. 2017;85:e00733–16 This study examines the mechanism of how inflammasome activation impairs the generation of antigen-specific T cell responses duringL. monocytogenesinfection. Importantly, the authors demonstrate that rather than pyroptotic death of APCs, it is the inflammation associated with inflammasome activation that impairs adaptive immunity. CrossRefGoogle Scholar
  92. 92.
    Williams CR, Dustin ML, Sauer JD. Inflammasome-mediated inhibition of listeria monocytogenes-stimulated immunity is independent of myelomonocytic function. PLoS One. 2013;8:83191.CrossRefGoogle Scholar
  93. 93.
    Kolb R, Phan L, Borcherding N, et al. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat Commun. 2016;7:13007.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Drexler SK, Bonsignore L, Masin M, Tardivel A, Jackstadt R, Hermeking H, et al. Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc Natl Acad Sci U S A. 2012;109:18384–9.CrossRefGoogle Scholar
  95. 95.
    Wang H, Luo Q, Feng X, Zhang R, Li J, Chen F. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma. BMC Cancer. 2018;18:500.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Huang CF, Chen L, Li YC, Wu L, Yu GT, Zhang WF, et al. NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2017;36:116.Google Scholar
  97. 97.
    Kim JW, Koh Y, Kim DW, et al. Clinical implications of VEGF, TGF-β1, and IL-1β in patients with advanced non-small cell lung cancer. Cancer Res Treat. 2013;45:325–33.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tas F, Tilgen Yasasever C, Karabulut S, Tastekin D, Duranyildiz D. Clinical significance of serum interleukin-18 (IL-18) levels in patients with gastric cancer. Biomed Pharmacother. 2015;70:19–23.PubMedCrossRefGoogle Scholar
  99. 99.
    Xue Y, Du H-D, Tang D, et al. Correlation between the NLRP3 inflammasome and the prognosis of patients with LSCC. Front Oncol. 2019;9:588.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Chow MT, Sceneay J, Paget C, Wong CSF, Duret H, Tschopp J, et al. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. Cancer Res. 2012;72:5721–32.PubMedCrossRefGoogle Scholar
  101. 101.
    Daley D, Mani VR, Mohan N, Akkad N, Pandian GSDB, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711–24.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Guo B, Fu S, Zhang J, Liu B, Li Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep. 2016;6:36107.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Chen IF, Ou-Yang F, Hung JY, Liu JC, Wang H, Wang SC, et al. AIM2 suppresses human breast cancer cell proliferation in vitro and mammary tumor growth in a mouse model. Mol Cancer Ther. 2006;5:1–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Liu ZY, Yi J, Liu FE. The molecular mechanism of breast cancer cell apoptosis induction by absent in melanoma (AIM2). Int J Clin Exp Med. 2015;8:14750–8.Google Scholar
  105. 105.
    Wilson JE, Petrucelli AS, Chen L, Koblansky AA, Truax AD, Oyama Y, et al. Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat Med. 2015;21:906–13.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Liu R, Truax AD, Chen L, Hu P, Li Z, Chen J, et al. Expression profile of innate immune receptors, NLRs and AIM2, in human colorectal cancer: correlation with cancer stages and inflammasome components. Oncotarget. 2015;6:33456–69.Google Scholar
  107. 107.
    Dihlmann S, Tao S, Echterdiek F, Herpel E, Jansen L, Chang-Claude J, et al. Lack of absent in melanoma 2 (AIM2) expression in tumor cells is closely associated with poor survival in colorectal cancer patients. Int J Cancer. 2014;135:2387–96.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Karan D. Inflammasomes: emerging central players in cancer immunology and immunotherapy. Front Immunol. 2018;9:3028.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Sibelius U, Rose F, Chakraborty T, Darji A, Wehland J, Weiss S, et al. Listeriolysin is a potent inducer of the phosphatidylinositol response and lipid mediator generation in human endothelial cells. Infect Immun. 1996;64:674–6.Google Scholar
  110. 110.
    Noor S, Goldfine H, Tucker DE, Suram S, Lenz LL, Akira S, et al. Activation of cytosolic phospholipase A2α in resident peritoneal macrophages by Listeria monocytogenes involves listeriolysin O and TLR2. J Biol Chem. 2008;283:4744–55.PubMedCrossRefGoogle Scholar
  111. 111.
    Lone AM, Taskén K. Proinflammatory and immunoregulatory roles of eicosanoids in T cells. Front Immunol. 2013;4:130.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Park JY, Pillinger MH, Abramson SB. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin Immunol. 2006;119:229–40.PubMedCrossRefGoogle Scholar
  113. 113.
    • Theisen E, McDougal CE, Nakanishi M, Stevenson DM, Amador-Noguez D, Rosenberg DW, et al. Cyclooxygenase-1 and -2 play contrasting roles in Listeria-stimulated immunity. J Immunol. 2018;200:3729–38 This study demonstrates that eicosanoids are produced duringL. monocytogenesinfection and influence T cell priming. Importantly, the authors show that the critical eicosanoid mediating the generation of antigen-specific T cell responses is PGE 2. PubMedCrossRefGoogle Scholar
  114. 114.
    Hahn T, Alvarez I, Kobie JJ, Ramanathapuram L, Dial S, Fulton A, et al. Short-term dietary administration of celecoxib enhances the efficacy of tumor lysate-pulsed dendritic cell vaccines in treating murine breast cancer. Int J Cancer. 2006;118:2220–31.PubMedCrossRefGoogle Scholar
  115. 115.
    Haas AR, Sun J, Vachani A, Wallace AF, Silverberg M, Kapoor V, et al. Cycloxygenase-2 inhibition augments the efficacy of a cancer vaccine. Clin Cancer Res. 2006;12:214–22.PubMedCrossRefGoogle Scholar
  116. 116.
    Zelenay S, Van Der Veen AG, Böttcher JP, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 2015;162:1257–70.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Walker W, Rotondo D. Prostaglandin E2 is a potent regulator of interleukin-12- and interleukin-18-induced natural killer cell interferon-γ synthesis. Immunology. 2004;111:298–305.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Joshi PC, Zhou X, Cuchens M, Jones Q. Prostaglandin E2 suppressed IL-15-mediated human NK cell function through down-regulation of common γ-chain. J Immunol. 2001;166:885–91.PubMedCrossRefGoogle Scholar
  119. 119.
    Aronoff DM, Canetti C, Peters-Golden M. Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J Immunol. 2004;173:559–65.PubMedCrossRefGoogle Scholar
  120. 120.
    Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007;13:721–6.CrossRefGoogle Scholar
  121. 121.
    Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 2007;67:4507–13.PubMedCrossRefGoogle Scholar
  122. 122.
    Kaliński P, Hilkens CM, Snijders A, Snijdewint FG, Kapsenberg ML. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol. 1997;159:28–35.PubMedGoogle Scholar
  123. 123.
    Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y. Prostaglandin E2 -induced inflammation: relevance of prostaglandin e receptors. Biochim Biophys Acta Mol Cell Biol Lipids. 2015;1851:414–21.CrossRefGoogle Scholar
  124. 124.
    Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol. 2012;188:21–8.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10:181–93.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Luft T, Jefford M, Luetjens P, Toy T, Hochrein H, Masterman KA, et al. Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E2 regulates the migratory capacity of specific DC subsets. Blood. 2002;100:1362–72.PubMedCrossRefGoogle Scholar
  127. 127.
    Mason NJ, Gnanandarajah JS, Engiles JB, Gray F, Laughlin D, Gaurnier-Hausser A, et al. Immunotherapy with a HER2-targeting listeria induces HER2-specific immunity and demonstrates potential therapeutic effects in a phase I trial in canine osteosarcoma. Clin Cancer Res. 2016;22:4380–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zachary T. Morrow
    • 1
  • Zachary M. Powers
    • 1
  • John-Demian Sauer
    • 1
    Email author
  1. 1.Department of Medical Microbiology and ImmunologyUniversity of Wisconsin-Madison, School of Medicine and Public HealthMadisonUSA

Personalised recommendations