Advertisement

Viral Genetic Diversity and Its Potential Contributions to the Development and Progression of Neonatal Herpes Simplex Virus (HSV) Disease

  • Lisa N. Akhtar
  • Moriah L. SzparaEmail author
Virology (A Nicola, Section Editor)
  • 25 Downloads
Part of the following topical collections:
  1. Topical Collection on Virology

Abstract

Purpose of Review

Neonatal infection by herpes simplex virus (HSV) 1 or 2 presents a devastating burden to new parents due to the unpredictability of severe clinical outcomes as well as the potential for lifelong viral reactivation. While just under half of neonatal HSV infections have mild clinical impacts akin to the skin lesions observed in adults, the other half of these infants experience viral spread throughout the body (disseminated infection) and/or the brain (central nervous system infection).

Summary

Here we summarize current data on clinical diagnostic measures, antiviral therapy, and known aspects of human host biology that contribute to the distinct neonatal outcomes of HSV infection.

Recent Findings

We then explore recent new data on how viral genetic diversity between infections may impact clinical outcomes. Further research will be critical to build upon these early findings and to provide statistical power to our ability to discern and/or predict the potential clinical course of a given neonatal infection.

Keywords

Neonatal Herpes simplex virus Human herpesvirus 1 Human herpesvirus 2 Comparative genomics Encephalitis 

Notes

Acknowledgments

We thank the members of the Szpara and Weitzman labs for helpful discussions.

Funding Information

This research was supported by NIAID grant 1R21AI140443 (MLS) and NINDS grant 1K08NS109332 (LNA), with additional support from the following: startup funds from the Pennsylvania State University (MLS) and a CURE grant from the Pennsylvania (PA) Department of Health (MLS). The PA Department of Health specifically disclaims responsibility for any analyses, interpretations, or conclusions.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by either of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Looker KJ, Magaret AS, May MT, Turner KM, Vickerman P, Newman LM, et al. First estimates of the global and regional incidence of neonatal herpes infection. Lancet Glob Health. 2017;5(3):e300–9. This study provides a recent statistical evaluation of the global burden of neonatal HSV. The authors note that these estimates are subject to under-reporting and unrecognized diagnoses of neonatal HSV, especially in areas with a high incidence of genital HSV.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Looker KJ, Magaret AS, May MT, Turner KME, Vickerman P, Gottlieb SL, et al. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS One. 2015;10(10):e0140765.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Looker KJ, Magaret AS, Turner KME, Vickerman P, Gottlieb SL, Newman LM. Global estimates. This study analyzed over 58,000 live births to detect HSV shedding at the of prevalent and incident herpes simplex virus type 2 infections in 2012. PLoS One. 2015;10(1):e114989.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    •• Brown ZA, Wald A, Morrow RA, Selke S, Zeh J, Corey L. Effect of serologic status and cesarean delivery on transmission rates of herpes simplex virus from mother to infant. Jama. 2003;289(2):203–9 Time of delivery of these just over 200 were HSV-positive. Statistics on transmission risk derived from this landmark study form the basis of current medical practice for the care of HSV-positive mothers and their neonates during childbirth.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Brown ZA, Selke S, Zeh J, Kopelman J, Maslow A, Ashley RL, et al. The acquisition of herpes simplex virus during pregnancy. N Engl J Med. 1997;337(8):509–16.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Whitley RJ, Corey L, Arvin A, Lakeman FD, Sumaya CV, Wright PF, et al. Changing presentation of herpes simplex virus infection in neonates. J Infect Dis. 1988;158(1):109–16.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Pinninti SG, Kimberlin DW. Neonatal herpes simplex virus infections. Semin Perinatol. 2018;42(3):168–75.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    • Kimberlin DW, Lin CY, Jacobs RF, Powell DA, Corey L, Gruber WC, et al. Safety and efficacy of high-dose intravenous acyclovir in the management of neonatal herpes simplex virus infections. Pediatrics. 2001;108(2):230–8. This is one of three related clinical trials that form the basis of current therapeutic approaches for the treatment and ongoing case-management of HSV-infected neonates.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Whitley R, Arvin A, Prober C, Corey L, Burchett S, Plotkin S, et al. Predictors of morbidity and mortality in neonates with herpes simplex virus infections. N Engl J Med. 1991;324(7):450–4.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    • Kimberlin DW, Whitley RJ, Wan W, Powell DA, Storch G, Ahmed A, et al. Oral acyclovir suppression and neurodevelopment after neonatal herpes. N Engl J Med. 2011;365(14):1284–92. This is the most recent of three related clinical trials that form the basis of current therapeutic approaches for the treatment and ongoing case-management of HSV-infected neonates. PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Baldwin S,Whitley RJ. Intrauterine herpes simplex virus infection. Teratology. 1989;39(1):1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Field SS. Fatal neonatal herpes simplex infection likely from unrecognized breast lesions. J Hum Lact. 2016;32(1):86–8.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    • Shipley MM, Renner DW, Pandey U, Ford B, Bloom DC, Grose C, et al. Personalized viral genomic investigation of herpes simplex virus 1 perinatal viremic transmission with dual fatality. Mol Case Stud. 2019;mcs.a004382. This recent study uses oligonucleotide-baits to enrich HSV genomes without culturing, from diagnostic samples of an unusual case of maternal-neonatal transmission. These data reveal that the majority of viral genetic diversity in a maternal viremic infection is transferred to the neonate, and that new viral genetic diversity can arise quickly in the neonate.Google Scholar
  14. 14.
    Muller WJ, Zheng X. Laboratory diagnosis of neonatal herpes simplex virus infections. J Clin Microbiol. 2019;57(5):e01460-18.Google Scholar
  15. 15.
    • Whitley R, Arvin A, Prober C, Burchett S, Corey L, Powell D, et al. A controlled trial comparing vidarabine with acyclovir in neonatal herpes simplex virus infection. N Engl J Med. 1991;324(7):444–9. This is one of three related clinical trials that form the basis of current therapeutic approaches for the treatment and ongoing case-management of HSV-infected neonates.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kimberlin DW, Lin CY, Jacobs RF, Powell DA, Frenkel LM, Gruber WC, et al. Natural history of neonatal herpes simplex virus infections in the acyclovir era. Pediatrics. 2001;108(2):223–9.PubMedCrossRefGoogle Scholar
  17. 17.
    •• Jiang Y, Patel CD, Manivanh R, North B, Backes IM, Posner DA, et al. Maternal antiviral immunoglobulin accumulates in neural tissue of neonates to prevent HSV neurological disease. mBio. 2017 6;8(4):e00678-17. This key study demonstrates not only the presence of maternal antibody in neonatal nervous system tissue, but also a protective role for the neonate in this transfer of maternal immunity.Google Scholar
  18. 18.
    Patel CD, Backes IM, Taylor SA, Jiang Y, Marchant A, Pesola JM, et al. Maternal immunization confers protection against neonatal herpes simplex mortality and behavioral morbidity. Sci Transl Med. 2019;11(487):eaau6039.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    • Casrouge A, Zhang S-Y, Eidenschenk C, Jouanguy E, Puel A, Yang K, et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science. 2006;314:6. This is one in a series of publications from Casanova and colleagues that delineate host genetic contributions to HSV encephalitis outside of the neonatal period. PubMedCrossRefGoogle Scholar
  20. 20.
    Sancho-Shimizu V, Pérez de Diego R, Lorenzo L, Halwani R, Alangari A, Israelsson E, et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest. 2011;121(12):4889–902.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Pérez de Diego R, Sancho-Shimizu V, Lorenzo L, Puel A, Plancoulaine S, Picard C, et al. Human TRAF3 adaptor molecule deficiency leads to impaired toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity. 2010 Sep;33(3):400–11.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Herman M, Ciancanelli M, Ou Y-H, Lorenzo L, Klaudel-Dreszler M, Pauwels E, et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med. 2012;209(9):1567–82.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhang S-Y, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317(5844):1522–7.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med. 2011;208(10):2083–98.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lim HK, Seppanen M, Hautala T, Ciancanelli MJ, Itan Y, Lafaille FG, et al. TLR3 deficiency in herpes simplex encephalitis: high allelic heterogeneity and recurrence risk. Neurology. 2014;83(21):1888–97.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Reinert LS, Harder L, Holm CK, Iversen MB, Horan KA, Dagnæs-Hansen F, et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J Clin Invest. 2012;122(4):1368–76.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lafaille FG, Pessach IM, Zhang S-Y, Ciancanelli MJ, Herman M, Abhyankar A, et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature. 2012;491(7426):769–73.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zimmer B, Ewaleifoh O, Harschnitz O, Lee Y-S, Peneau C, JL MA, et al. Human iPSC-derived trigeminal neurons lack constitutive TLR3-dependent immunity that protects cortical neurons from HSV-1 infection. Proc Natl Acad Sci. 2018;115(37):E8775–82.CrossRefGoogle Scholar
  29. 29.
    Hall J, Almy R. Evidence for control of herpes simplex virus mutagenesis by the viral DNA polymerase. Virology. 1982;116(2):535–43.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Drake JW, Hwang CBC. On the mutation rate of herpes simplex virus type 1. Genetics. 2005;170(2):969–70.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sakaoka H, Saito H, Sekine K, Aomori T, Grillner L, Wadell G, et al. Genomic comparison of herpes simplex virus type 1 isolates from Japan, Sweden and Kenya. J Gen Virol. 1987;68:749–64.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Sakaoka H, Kurita K, Iida Y, Takada S, Umene K, Kim YT, et al. Quantitative analysis of genomic polymorphism of herpes simplex virus type 1 strains from six countries: studies of molecular evolution and molecular epidemiology of the virus. J Gen Virol. 1994;75(3):513–27.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Sakaoka H, Kawana T, Grillner L, Aomori T, Yamaguchi T, Saito H, et al. Genome variations in herpes simplex virus type 2 strains isolated in Japan and Sweden. J Gen Virol. 1987;68:2105–16.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Norberg P, Kasubi MJ, Haarr L, Bergstrom T, Liljeqvist J-A. Divergence and recombination of clinical herpes simplex virus type 2 isolates. J Virol. 2007;81(23):13158–67.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Szpara ML, Parsons L, Enquist LW. Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations. J Virol. 2010;84(10):5303–13.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    • Szpara ML, Gatherer D, Ochoa A, Greenbaum B, Dolan A, Bowden RJ, et al. Evolution and diversity in human herpes simplex virus genomes. J Virol. 2014;88(2):1209–27. This study provides a comprehensive comparative genomics assessment of the sequence diversity of 26 strains of HSV-1, and it explores the impacts of these viral genetic differences at the level of genomes, genes, proteins, and non-coding features.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Pandey U, Renner DW, Thompson RL, Szpara ML, Sawtell NM. Inferred father-to-son transmission of herpes simplex virus results in near-perfect preservation of viral genome identity and in vivo phenotypes. Sci Rep. 2017;7(1).Google Scholar
  38. 38.
    Greninger AL, Roychoudhury P, Xie H, Casto A, Cent A, Pepper G, et al. Ultrasensitive capture of human herpes simplex virus genomes directly from clinical samples reveals extraordinarily limited evolution in cell culture. mSphere. 2018;3(3):e00283–18.Google Scholar
  39. 39.
    Kolb AW, Larsen IV, Cuellar JA, Brandt CR. Genomic, phylogenetic, and recombinational characterization of herpes simplex virus 2 strains. J Virol. 2015;89(12):6427–34.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Newman RM, Lamers SL, Weiner B, Ray SC, Colgrove RC, Diaz F, et al. Genome sequencing and analysis of geographically diverse clinical isolates of herpes simplex virus 2. J Virol. 2015;89:8219–32 JVI.01303–15.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Minaya MA, Jensen TL, Goll JB, Korom M, Datla SH, Belshe RB, et al. Molecular evolution of herpes simplex virus 2 complete genomes: comparison between primary and recurrent infections. J Virol. 2017 ;91(23). :e00942–17.Google Scholar
  42. 42.
    Johnston C, Magaret A, Roychoudhury P, Greninger AL, Reeves D, Schiffer J, et al. Dual-strain genital herpes simplex virus type 2 (HSV-2) infection in the US, Peru, and 8 countries in sub-Saharan Africa: a nested cross-sectional viral genotyping study. PLoS Med. 2017;14(12):e1002475.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    •• Akhtar LN, Bowen CD, Renner DW, Pandey U, Della Fera AN, Kimberlin DW, et al. Genotypic and phenotypic diversity of herpes simplex virus 2 within the infected neonatal population. mSphere. 2019;4(1):e00590-18. This study by the authors provides the impetus for this review. It reveals for the first time the breadth neonatal of viral genetic diversity, and phenotypic diversity in terms of cell-to-cell spread phenotypes, using HSV-2 cultures from the initial diagnoses of newly-infected neonates.Google Scholar
  44. 44.
    Shipley MM, Renner DW, Ott M, Bloom DC, Koelle DM, Johnston C, et al. Genome-wide surveillance of genital herpes simplex virus type 1 from multiple anatomic sites over time. J Infect Dis. 2018;218(4):595–605.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Koelle DM, Norberg P, Fitzgibbon MP, Russell RM, Greninger AL, Huang M-L, et al. Worldwide circulation of HSV-2 × HSV-1 recombinant strains. Sci Rep. 2017;7(1): 44084.Google Scholar
  46. 46.
    Burrel S, Boutolleau D, Ryu D, Agut H, Merkel K, Leendertz FH, et al. Ancient recombination events between human herpes simplex viruses. Mol Biol Evol. 2017;34(7):1713–21.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Casto AM, Roychoudhury P, Xie H, Selke S, Perchetti GA, Wofford H, et al. Large, stable, contemporary interspecies recombination events in circulating human herpes simplex viruses. J Infect Dis. 2019; jiz199.  https://doi.org/10.1093/infdis/jiz199.
  48. 48.
    Kimberlin D. Identification of herpes simplex virus (HSV) shedding in the female genital tract of pregnant and nonpregnant women by GeneXpert PCR, routine PCR, and culture. ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US); 2013. Available from: https://clinicaltrials.gov/ct2/show/NCT01878383.
  49. 49.
    Corey L, Whitley R, Stone EF, Mohan K. Difference between herpes simplex virus type 1 and type 2 neonatal encephalitis in neurological outcome. Lancet. 1988;1(8575–6):1–4.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Otto WR, Myers AL, LaRussa B, Kimberlin DW, Jackson MA. Clinical markers and outcomes of neonates with herpes simplex virus deoxyribonucleic acid persistence in cerebrospinal fluid in disseminated and central nervous system infection. J Pediatric Infect Dis Soc. 2018;7(2):e30–3.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Sarisky RT, Nguyen TT, Duffy KE, Wittrock RJ, Leary JJ. Difference in incidence of spontaneous mutations between herpes simplex virus types 1 and 2. Antimicrob Agents Chemother. 2000;44(6):1524–9.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bower JR, Mao H, Durishin C, Rozenbom E, Detwiler M, Rempinski D, et al. Intrastrain variants of herpes simplex virus type 1 isolated from a neonate with fatal disseminated infection differ in the ICP34.5 gene, glycoprotein processing, and neuroinvasiveness. J Virol. 1999;73:11.Google Scholar
  53. 53.
    • Renzette N, Gibson L, Bhattacharjee B, Fisher D, Schleiss MR, Jensen JD, et al. Rapid intrahost evolution of human cytomegalovirus is shaped by demography and positive selection. PLoS Genet. 2013;9(9):1–14. This is one example in a series of studies on congenital infections caused by the betaherpesvirus, human cytomegalovirus (HCMV). While the cell types infected by HCMV and its manner of spread are quite distinct from those of HSV, these studies have influenced ongoing comparative genomics analyses of this and other herpesviruses.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Depledge DP, Kundu S, Jensen NJ, Gray ER, Jones M, Steinberg S, et al. Deep sequencing of viral genomes provides insight into the evolution and pathogenesis of varicella zoster virus and its vaccine in humans. Mol Biol Evol. 2014;31(2):397–409.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Hage E, Wilkie GS, Linnenweber-Held S, Dhingra A, Suárez NM, Schmidt JJ, et al. Characterization of human Cytomegalovirus genome diversity in immunocompromised hosts by whole-genome sequencing directly from clinical specimens. J Infect Dis. 2017;215(11):1673–83.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of Infectious DiseasesChildren’s Hospital of Philadelphia and University of Pennsylvania Perelman School of MedicinePhiladelphiaUSA
  2. 2.Departments of Biology and Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations