Current Clinical Microbiology Reports

, Volume 3, Issue 4, pp 216–224 | Cite as

HIV Dynamics With Immune Responses: Perspectives From Mathematical Modeling

  • Elissa J. Schwartz
  • Karin R. H. Biggs
  • Clayton Bailes
  • Kari A. Ferolito
  • Naveen K. Vaidya
Virology (A Nicola, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Virology


Purpose of Review

Human immunodeficiency virus (HIV) has infected over 36 million individuals worldwide and presents a tremendous public health concern, yet much remains unknown about the effect of immune responses on infection. In this review, we discuss the current status of mathematical modeling of HIV-immune system dynamics and how advances in modeling approaches have contributed to our understanding of the role of immune responses in virus infection.

Recent Findings

Recent advances provide important quantitative findings about CD8+ T cell and antibody responses. Specifically, these models explain important dynamical features such as the intracellular eclipse phase, and they estimate immune escape rates, the timing of MHC downregulation, and the proportion of virus in antibody-viral complexes.


Models of HIV-immune system dynamics, validated with experimental data, advance our quantitative understanding of infection and can generate hypotheses for further experiments. Greater insight on immune responses in HIV infection dynamics can lead to the development of vaccines and ultimately a cure for this infection.


Virus dynamics Immune response Mathematical models Virus escape Human immunodeficiency virus (HIV) CD8+ T cell responses Antibodies 



The authors thank A. T. Dawes, R. Tyson, and C. A. Cobbold for careful reading of the manuscript and helpful comments. This work is supported by NSF grant DMS-1616299 (to NKV), a grant from the Association for Women in Mathematics (to EJS), and an international research award from Washington State University (to EJS).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Perelson AS, Ribeiro RM. Modeling the within-host dynamics of HIV infection. BMC Biol. 2013;11:96.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alizon S, Magnus C. Modelling the course of an HIV infection: insights from ecology and evolution. Viruses. 2012;4:1984–2013.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    De Boer RJ, Perelson AS. Target cell limited and immune control models of HIV infection: a comparison. J Theor Biol. 1998;190:201–14.CrossRefPubMedGoogle Scholar
  4. 4.
    Padmanabhan P, Dixit NM. Models of viral population dynamics. Curr Top Microbiol Immunol. 2016;392:277–302.PubMedGoogle Scholar
  5. 5.
    Perelson AS. Modelling viral and immune system dynamics. Nat Rev Immunol. 2002;2:28–36.CrossRefPubMedGoogle Scholar
  6. 6.
    Wodarz D. Modeling T cell responses to antigenic challenge. J Pharmacokinet Pharmacodyn. 2014;41:415–29.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jin X, Bauer DE, Tuttleton SE, Lewin S, Gettie A, et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med. 1999;189:991–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Matano T, Shibata R, Siemon C, Connors M, Lane HC, et al. Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J Virol. 1998;72:164–9.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Schmitz JE, Johnson RP, McClure HM, Manson KH, Wyand MS, et al. Effect of CD8+ lymphocyte depletion on virus containment after simian immunodeficiency virus SIVmac251 challenge of live attenuated SIVmac239delta3-vaccinated rhesus macaques. J Virol. 2005;79:8131–41.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science. 1999;283:857–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Regoes RR, Antia R, Garber DA, Silvestri G, Feinberg MB, et al. Roles of target cells and virus-specific cellular immunity in primary simian immunodeficiency virus infection. J Virol. 2004;78:4866–75.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kouyos RD, Gordon SN, Staprans SI, Silvestri G, Regoes RR. Similar impact of CD8+ T cell responses on early virus dynamics during SIV infections of rhesus macaques and sooty mangabeys. PLoS Comput Biol. 2010;6(8): e1000901. doi: 10.1371/journal.pcbi.1000901.
  13. 13.
    Davenport MP, Ribeiro RM, Perelson AS. Kinetics of virus-specific CD8+ T cells and the control of human immunodeficiency virus infection. J Virol. 2004;78:10096–103.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood. 2006;107:4781–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Deeks SG, Walker BD. Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity. 2007;27:406–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Elemans M, Thiebaut R, Kaur A, Asquith B. Quantification of the relative importance of CTL, B cell, NK cell, and target cell limitation in the control of primary SIV-infection. PLoS Comput Biol. 2011;7:e1001103.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Althaus CL, De Boer RJ. Implications of CTL-mediated killing of HIV-infected cells during the non-productive stage of infection. PLoS One. 2011;6:e16468.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Althaus CL, De Boer RJ. Impaired immune evasion in HIV through intracellular delays and multiple infection of cells. Proc Biol Sci. 2012;279:3003–10.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    van Deutekom HW, Wijnker G, de Boer RJ. The rate of immune escape vanishes when multiple immune responses control an HIV infection. J Immunol. 2013;191:3277–86.CrossRefPubMedGoogle Scholar
  20. 20.
    Pawelek KA, Liu S, Pahlevani F, Rong L. A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data. Math Biosci. 2012;235:98–109.CrossRefPubMedGoogle Scholar
  21. 21.
    Balamurali M, Petravic J, Loh L, Alcantara S, Kent SJ, et al. Does cytolysis by CD8+ T cells drive immune escape in HIV infection? J Immunol. 2010;185:5093–101.CrossRefPubMedGoogle Scholar
  22. 22.
    Elemans M, Florins A, Willems L, Asquith B. Rates of CTL killing in persistent viral infection in vivo. PLoS Comput Biol. 2014;10:e1003534.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Elemans M, Seich Al Basatena NK, Klatt NR, Gkekas C, Silvestri G, et al. Why don’t CD8+ T cells reduce the lifespan of SIV-infected cells in vivo? PLoS Comput Biol. 2011;7:e1002200.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Klatt NR, Shudo E, Ortiz AM, Engram JC, Paiardini M, et al. CD8+ lymphocytes control viral replication in SIVmac239-infected rhesus macaques without decreasing the lifespan of productively infected cells. PLoS Pathog. 2010;6:e1000747.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Seich Al Basatena NK, Chatzimichalis K, Graw F, Frost SD, Regoes RR, et al. Can non-lytic CD8+ T cells drive HIV-1 escape? PLoS Pathog. 2013;9:e1003656.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wong JK, Strain MC, Porrata R, Reay E, Sankaran-Walters S, et al. In vivo CD8+ T-cell suppression of siv viremia is not mediated by CTL clearance of productively infected cells. PLoS Pathog. 2010;6:e1000748.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shridhar V, Chen Y, Gupta P. The CD8 antiviral factor (CAF) can suppress HIV-1 transcription from the long terminal repeat (LTR) promoter in the absence of elements upstream of the CATATAA box. Virol J. 2014;11:130.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bonneau KR, Ng S, Foster H, Choi KB, Berkhout B, et al. Derivation of infectious HIV-1 molecular clones with LTR mutations: sensitivity to the CD8+ cell noncytotoxic anti-HIV response. Virology. 2008;373:30–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Mosoian A, Teixeira A, Burns CS, Sander LE, Gusella GL, et al. Prothymosin-alpha inhibits HIV-1 via toll-like receptor 4-mediated type I interferon induction. Proc Natl Acad Sci U S A. 2010;107:10178–83.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    DeVico AL, Gallo RC. Control of HIV-1 infection by soluble factors of the immune response. Nat Rev Microbiol. 2004;2:401–13.CrossRefPubMedGoogle Scholar
  31. 31.
    Wick WD, Yang OO. Biologically-directed modeling reflects cytolytic clearance of SIV-infected cells in vivo in macaques. PLoS One. 2012;7:e44778.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.••
    Gadhamsetty S, Coorens T, de Boer RJ. Notwithstanding circumstantial alibis, cytotoxic T cells can be major killers of HIV-1-infected cells. J Virol. 2016;90:7066–83. The authors showed that mathematical modeling supports the direct killing mechanism of CTLs, and conclude that a CTL killing mechanism fits well when the model includes the eclipse phase before virus production and when killing is fast and varies over the life cycle of infected cells.Google Scholar
  33. 33.
    Gadhamsetty S, Beltman JB, de Boer RJ. What do mathematical models tell us about killing rates during HIV-1 infection? Immunol Lett. 2015;168:1–6.CrossRefPubMedGoogle Scholar
  34. 34.••
    Conway JM, Perelson AS. Post-treatment control of HIV infection. Proc Natl Acad Sci U S A. 2015;112:5467–72. This study develops a mathematical model to describe the potential mechanism by which only a small fraction of patients exhibit post-treatment virus control. The study further gives a quantitative description of the roles of the CD8+ T cell response and latent reservoir size on patients showing viral rebound or the elite controller phenotype.Google Scholar
  35. 35.
    Huang G, Takeuchi Y, Korobeinikov A. HIV evolution and progression of the infection to AIDS. J Theor Biol. 2012;307:149–59.CrossRefPubMedGoogle Scholar
  36. 36.
    Ganusov VV, Neher RA, Perelson AS. Mathematical modeling of escape of HIV from cytotoxic T lymphocyte responses. J Stat Mech. 2013;2013:P01010.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kent SJ, Fernandez CS, Dale CJ, Davenport MP. Reversion of immune escape HIV variants upon transmission: insights into effective viral immunity. Trends Microbiol. 2005;13:243–6.CrossRefPubMedGoogle Scholar
  38. 38.••
    Wick WD, Yang OO. War in the body : the evolutionary arms race between HIV and the human immune system and the implications for vaccines. New York: Springer; 2013. 298 pages. The authors derived a formula to calculate the escape rate of HIV to predict the expected number of times per generation that a new HIV lineage with escape mutations emerge and evade extinction.Google Scholar
  39. 39.
    Ganusov VV, Goonetilleke N, Liu MK, Ferrari G, Shaw GM, et al. Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response determine the rate of CTL escape during acute and chronic phases of HIV infection. J Virol. 2011;85:10518–28.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.•
    Martyushev AP, Petravic J, Grimm AJ, Alinejad-Rokny H, Gooneratne SL, et al. Epitope-specific CD8+ T cell kinetics rather than viral variability determine the timing of immune escape in simian immunodeficiency virus infection. J Immunol. 2015;194:4112–21. The authors analyzed epitope-specific CD8+ T cells in pigtail macaques infected with SIV to look for patterns of escape mutations. They found that timing of escape is largely determined by the kinetics of epitope-specific T cells and not by the conservation or variability of an epitope.Google Scholar
  41. 41.•
    Kessinger TA, Perelson AS, Neher RA. Inferring HIV escape rates from multi-locus genotype data. Front Immunol. 2013;4:252. The authors compare escape rates for modeled infections with serially sampled sequence data from three HIV-infected individuals. They predicted escape rates that were higher than previously estimated.Google Scholar
  42. 42.•
    Leviyang S, Ganusov VV. Broad CTL response in early HIV infection drives multiple concurrent CTL escapes. PLoS Comput Biol. 2015;11:e1004492. This paper uses a robust method of CD8+ T cell escape rate calculation that corrects for inherent biases against multiple escapes at the same epitope. Their results are able to bring estimates to the 0.1-0.2 escape events per day predicted by clinical data.Google Scholar
  43. 43.
    Liu MK, Hawkins N, Ritchie AJ, Ganusov VV, Whale V, et al. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. J Clin Invest. 2013;123:380–93.PubMedGoogle Scholar
  44. 44.
    Johnson PL, Kochin BF, McAfee MS, Stromnes IM, Regoes RR, et al. Vaccination alters the balance between protective immunity, exhaustion, escape, and death in chronic infections. J Virol. 2011;85:5565–70.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Reece J, Petravic J, Balamurali M, Loh L, Gooneratne S, et al. An “escape clock” for estimating the turnover of SIV DNA in resting CD4(+) T cells. PLoS Pathog. 2012;8:e1002615.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Konrad BP, Vaidya NK, Smith RJ. Modelling mutation to a cytotoxic T-lymphocyte HIV vaccine. Math Popul Stud. 2011;18:122–49.Google Scholar
  47. 47.
    Kadolsky UD, Asquith B. Quantifying the impact of human immunodeficiency virus-1 escape from cytotoxic T-lymphocytes. PLoS Comput Biol. 2010;6:e1000981.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schwartz EJ, Yang OO, Cumberland WC, de Pillis LG. Computational model of HIV-1 escape from the cytotoxic T lymphocyte response. Can Appl Math Q. 2013;21:261–79.Google Scholar
  49. 49.
    Gadhamsetty S, Maree AF, Beltman JB, de Boer RJ. A general functional response of cytotoxic T lymphocyte-mediated killing of target cells. Biophys J. 2014;106:1780–91.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Castiglione F, Celada F. Immune system modelling and simulation. Boca Raton: CRC; 2015. p. 286.Google Scholar
  51. 51.
    Liu P, Overman RG, Yates NL, Alam SM, Vandergrift N, et al. Dynamic antibody specificities and virion concentrations in circulating immune complexes in acute to chronic HIV-1 infection. J Virol. 2011;85:11196–207.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ciupe SM, De Leenheer P, Kepler TB. Paradoxical suppression of poly-specific broadly neutralizing antibodies in the presence of strain-specific neutralizing antibodies following HIV infection. J Theor Biol. 2011;277:55–66.CrossRefPubMedGoogle Scholar
  53. 53.
    Ciupe SM. Mathematical model of multivalent virus-antibody complex formation in humans following acute and chronic HIV infections. J Math Biol. 2015;71:513–32.CrossRefPubMedGoogle Scholar
  54. 54.
    Vaidya NK, Ribeiro RM, Miller CJ, Perelson AS. Viral dynamics during primary simian immunodeficiency virus infection: effect of time-dependent virus infectivity. J Virol. 2010;84:4302–10.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.••
    Wikramaratna PS, Lourenco J, Klenerman P, Pybus OG, Gupta S. Effects of neutralizing antibodies on escape from CD8+ T-cell responses in HIV-1 infection. Philos Trans R Soc Lond B Biol Sci. 2015. doi: 10.1098/rstb.2014.0290. This model includes both CD8+ T cells and the antibody response and suggests a role for antibodies that explains the breakdown of virus control as well as CD8+ T cell escape.
  56. 56.
    Bar KJ, Tsao CY, Iyer SS, Decker JM, Yang Y, et al. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape. PLoS Pathog. 2012;8:e1002721.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Taylor SD, Leib SR, Carpenter S, Mealey RH. Selection of a rare neutralization-resistant variant following passive transfer of convalescent immune plasma in equine infectious anemia virus-challenged SCID horses. J Virol. 2010;84:6536–48.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Taylor SD, Leib SR, Wu W, Nelson R, Carpenter S, et al. Protective effects of broadly neutralizing immunoglobulin against homologous and heterologous equine infectious anemia virus infection in horses with severe combined immunodeficiency. J Virol. 2011;85:6814–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.•
    Schwartz EJ, Nanda S, Mealey RH. Antibody escape kinetics of equine infectious anemia virus infection of horses. J Virol. 2015;89:6945–51. This study calculates antibody escape kinetics of equine infectious anemia virus, pioneering the estimation of antibody blocking rates of wild-type virus, fitness costs of mutant virus, and growth rates of both viruses. Such quantitative kinetic estimates may help develop antibody-eliciting vaccine strategies.Google Scholar
  60. 60.
    Ciupe SM, Schwartz EJ. Understanding virus-host dynamics following EIAV infection in SCID horses. J Theor Biol. 2014;343:1–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Schwartz EJ, Smith? RJ. Identifying the conditions under which antibodies protect against infection by equine infectious anemia virus. Vaccines. 2014;2:397–421.Google Scholar
  62. 62.
    Allen LJS, Schwartz EJ. Free-virus and cell-to-cell transmission in models of equine infectious anemia virus infection. Math Biosci. 2015;270:237–48.CrossRefPubMedGoogle Scholar
  63. 63.
    Schwartz EJ, Pawelek KA, Harrington K, Cangelosi R, Madrid S. Immune control of equine infectious anemia virus infection by cell-mediated and humoral responses. Appl Math. 2013;4:171–7.CrossRefGoogle Scholar
  64. 64.
    Luo S, Perelson AS. Competitive exclusion by autologous antibodies can prevent broad HIV-1 antibodies from arising. Proc Natl Acad Sci U S A. 2015;112:11654–9.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wang S, Mata-Fink J, Kriegsman B, Hanson M, Irvine DJ, et al. Manipulating the selection forces during affinity maturation to generate cross-reactive HIV antibodies. Cell. 2015;160:785–97.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ali Tabei SM, Li Y, Weigert M, Dinner AR. Model for competition from self during passive immunization, with application to broadly neutralizing antibodies for HIV. Vaccine. 2012;30:607–13.CrossRefPubMedGoogle Scholar
  67. 67.
    De Boer RJ, Perelson AS. Quantifying T lymphocyte turnover. J Theor Biol. 2013;327:45–87.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Elemans M, Seich Al Basatena NK, Asquith B. The efficiency of the human CD8+ T cell response: how should we quantify it, what determines it, and does it matter? PLoS Comput Biol. 2012;8:e1002381.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Luo S, Perelson AS. The challenges of modelling antibody repertoire dynamics in HIV infection. Philos Trans R Soc Lond B Biol Sci. 2015. doi: 10.1098/rstb.2014.0247.

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Elissa J. Schwartz
    • 1
    • 2
  • Karin R. H. Biggs
    • 2
  • Clayton Bailes
    • 2
  • Kari A. Ferolito
    • 2
  • Naveen K. Vaidya
    • 3
  1. 1.Department of Mathematics and StatisticsWashington State UniversityPullmanUSA
  2. 2.School of Biological SciencesWashington State UniversityPullmanUSA
  3. 3.Department of Mathematics and StatisticsUniversity of Missouri–Kansas CityKansas CityUSA

Personalised recommendations