Advertisement

Current Clinical Microbiology Reports

, Volume 3, Issue 2, pp 81–91 | Cite as

Genetic Susceptibility to Fungal Infections: What is in the Genes?

  • Stacey A. Maskarinec
  • Melissa D. Johnson
  • John R. PerfectEmail author
Mycology (J Perfect, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Mycology

Abstract

The development of severe fungal infections has long been associated with traditional risk factors such as profound immunosuppression, yet it remains challenging to understand why under similar conditions, only some patients will develop these infections while others will not. Recent studies have demonstrated the importance of host genetic variation in influencing the severity and susceptibility to invasive fungal infections. In this review, we examine selected primary immunodeficiencies characterized by their vulnerability to a narrow range of fungal pathogens and then focus on recently identified genetic polymorphisms associated with an increased susceptibility to invasive fungal infections.

Keywords

Genetic susceptibility Single-nucleotide polymorphism Invasive Candida infection Invasive aspergillosis Cryptococcus 

Notes

Acknowledgments

This work was supported by 5T32-AI052080-12 (SAM) and AI 73896, AI 04533, and AI 93257 (JRP) from the NIH.

Author Contributions

All authors contributed to the literature review, writing, reading, and approving the manuscript.

Compliance with Ethical Standards

Conflict of Interest

Stacey Maskarinec reports grants from the National Institutes of Health, during the conduct of the study.

Melissa Johnson reports grants and personal fees from Astellas Pharma, grants from Charles River Laboratories, and personal fees from Up To Date, LLC outside the submitted work.

John Perfect reports grants from Astellas, other from Pfizer, grants from Merck, other from F2G, and grants from Scynexis during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Chai LY, de Boer MG, van der Velden WJ, Plantinga TS, van Spriel AB, Jacobs C, et al. The Y238X stop codon polymorphism in the human beta-glucan receptor dectin-1 and susceptibility to invasive aspergillosis. J Infect Dis. 2011;203(5):736–43.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Netea MG, Joosten LA, van der Meer JW, Kullberg BJ, van de Veerdonk FL. Immune defence against Candida fungal infections. Nat Rev Immunol. 2015;15(10):630–42.CrossRefPubMedGoogle Scholar
  3. 3.
    de Boer MG, Jolink H, Halkes CJ, van der Heiden PL, Kremer D, Falkenburg JH, et al. Influence of polymorphisms in innate immunity genes on susceptibility to invasive aspergillosis after stem cell transplantation. PLoS One. 2011;6(4), e18403.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Delsing CE, Bleeker-Rovers CP, Kullberg BJ, Netea MG. Treatment of candidiasis: insights from host genetics. Expert Rev Anti Infect Ther. 2012;10(8):947–56.CrossRefPubMedGoogle Scholar
  5. 5.
    Lionakis MS. Genetic susceptibility to fungal infections in humans. Curr Fungal Infect Rep. 2012;6(1):11–22.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zaas A. Host genetic affect susceptibility to invasive aspergillosis. Medical Mycology. 2006;44:S55–60.CrossRefGoogle Scholar
  7. 7.
    Plato A, Hardison SE, Brown GD. Pattern recognition receptors in antifungal immunity. Semin Immunopathol. 2015;37(2):97–106.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.•
    Lionakis MS, Swamydas M, Fischer BG, Plantinga TS, Johnson MD, Jaeger M, et al. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J Clin Invest. 2013;123(12):5035–51. This study revealed the direct interaction of macrophages with fungus at the site of infection as well as showed that the dysfunctional CX3CR1 SNP is associated with susceptibility to infection in both mice and humans. Google Scholar
  9. 9.•
    Swamydas M, Gao JL, Break TJ, Johnson MD, Jaeger M, Rodriguez CA, et al. CXCR1-mediated neutrophil degranulation and fungal killing promote Candida clearance and host survival. Sci Transl Med. 2016;8(322):322ra10. This study identified CXCR1 as a critical factor in innate host immune defense against systemic Candida infection in both mice and humans, and that variation in CXCR1 in humans is associated with impaired neutrophil effector function. Google Scholar
  10. 10.
    Lanternier F, Cypowyj S, Picard C, Bustamante J, Lortholary O, Casanova JL, et al. Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr. 2013;25(6):736–47.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Antachopoulos C, Walsh TJ, Roilides E. Fungal infections in primary immunodeficiencies. Eur J Pediatr. 2007;166(11):1099–117.CrossRefPubMedGoogle Scholar
  12. 12.
    Smeekens SP, van de Veerdonk FL, Kullberg BJ, Netea MG. Genetic susceptibility to Candida infections. EMBO Mol Med. 2013;5(6):805–13.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C, Salzer U, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361(18):1727–35.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Casadevall A, Mitchell AP, Berman J, Kwon-Chung KJ, Perfect JR, Heitman J. Human fungal pathogens. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2015.Google Scholar
  15. 15.
    Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635–48.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zheng J, van de Veerdonk FL, Crossland KL, Smeekens SP, Chan CM, Al Shehri T, et al. Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC). Eur J Immunol. 2015;45(10):2834–46.CrossRefPubMedGoogle Scholar
  17. 17.
    Plantinga TS, Johnson MD, Scott WK, Joosten LA, van der Meer JW, Perfect JR, et al. Human genetic susceptibility to Candida infections. Med Mycol. 2012;50(8):785–94.CrossRefPubMedGoogle Scholar
  18. 18.
    van der Meer JW, van de Veerdonk FL, Joosten LA, Kullberg BJ, Netea MG. Severe Candida spp. infections: new insights into natural immunity. Int J Antimicrob Agents. 2010;36 Suppl 2:S58–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Lionakis MS. New insights into innate immune control of systemic candidiasis. Med Mycol. 2014;52(6):555–64.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bittner TC, Pannicke U, Renner ED, Notheis G, Hoffmann F, Belohradsky BH, et al. Successful long-term correction of autosomal recessive hyper-IgE syndrome due to DOCK8 deficiency by hematopoietic stem cell transplantation. Klin Padiatr. 2010;222(6):351–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–55.CrossRefPubMedGoogle Scholar
  22. 22.
    Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med. 2007;357(16):1608–19.CrossRefPubMedGoogle Scholar
  23. 23.
    Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448(7157):1058–62.CrossRefPubMedGoogle Scholar
  24. 24.
    Mogensen TH. STAT3 and the Hyper-IgE syndrome: clinical presentation, genetic origin, pathogenesis, novel findings and remaining uncertainties. Jakstat. 2013;2(2), e23435.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Conti HR, Baker O, Freeman AF, Jang WS, Holland SM, Li RA, et al. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucosal Immunol. 2011;4(4):448–55.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vinh DC, Sugui JA, Hsu AP, Freeman AF, Holland SM. Invasive fungal disease in autosomal-dominant hyper-IgE syndrome. J Allergy Clin Immunol. 2010;125(6):1389–90.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dagenais TR, Keller NP. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev. 2009;22(3):447–65.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fukuda T, Boeckh M, Carter RA, Sandmaier BM, Maris MB, Maloney DG, et al. Risks and outcomes of invasive fungal infections in recipients of allogeneic hematopoietic stem cell transplants after nonmyeloablative conditioning. Blood. 2003;102(3):827–33.CrossRefPubMedGoogle Scholar
  29. 29.
    Schmitt HJ, Blevins A, Sobeck K, Armstrong D. Aspergillus species from hospital air and from patients. Mycoses. 1990;33(11-12):539–41.PubMedGoogle Scholar
  30. 30.
    Martire B, Rondelli R, Soresina A, Pignata C, Broccoletti T, Finocchi A, et al. Clinical features, long-term follow-up and outcome of a large cohort of patients with chronic granulomatous disease: an Italian multicenter study. Clin Immunol. 2008;126(2):155–64.CrossRefPubMedGoogle Scholar
  31. 31.
    Winkelstein JA, Marino MC, Johnston Jr RB, Boyle J, Curnutte J, Gallin JI, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore). 2000;79(3):155–69.CrossRefGoogle Scholar
  32. 32.
    De Ravin SS, Challipalli M, Anderson V, Shea YR, Marciano B, Hilligoss D, et al. Geosmithia argillacea: an emerging cause of invasive mycosis in human chronic granulomatous disease. Clin Infect Dis. 2011;52(6):e136–43.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Giraud S, Favennec L, Bougnoux ME, Bouchara JP. Rasamsonia argillacea species complex: taxonomy, pathogenesis and clinical relevance. Future Microbiol. 2013;8(8):967–78.CrossRefPubMedGoogle Scholar
  34. 34.
    Lionakis MS, Netea MG. Candida and host determinants of susceptibility to invasive candidiasis. PLoS Pathog. 2013;9(1), e1003079.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bortoletto P, Lyman K, Camacho A, Fricchione M, Khanolkar A, Katz BZ. Chronic granulomatous disease: a large, single-center US experience. Pediatr Infect Dis J. 2015;34(10):1110–4.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Segal BH, DeCarlo ES, Kwon-Chung KJ, Malech HL, Gallin JI, Holland SM. Aspergillus nidulans infection in chronic granulomatous disease. Medicine (Baltimore). 1998;77(5):345–54.CrossRefGoogle Scholar
  37. 37.
    Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore). 2000;79(3):170–200.CrossRefGoogle Scholar
  38. 38.
    Vinh DC, Patel SY, Uzel G, Anderson VL, Freeman AF, Olivier KN, et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood. 2010;115(8):1519–29.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371(6494):221–6.CrossRefPubMedGoogle Scholar
  40. 40.•
    Smeekens SP, Ng A, Kumar V, Johnson MD, Plantinga TS, van Diemen C, et al. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat Commun. 2013;4:1342. By integrating transcriptional analysis and functional genomics, these authors demonstrated that the type I interferon pathway has a critical role in anti- Candida defense in humans. Google Scholar
  41. 41.
    Johnson MD, Plantinga TS, van de Vosse E, Velez Edwards DR, Smith PB, Alexander BD, et al. Cytokine gene polymorphisms and the outcome of invasive candidiasis: a prospective cohort study. Clin Infect Dis. 2012;54(4):502–10.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Plantinga TS, Johnson MD, Scott WK, van de Vosse E, Velez Edwards DR, Smith PB, et al. Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J Infect Dis. 2012;205(6):934–43.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Woehrle T, Du W, Goetz A, Hsu HY, Joos TO, Weiss M, et al. Pathogen specific cytokine release reveals an effect of TLR2 Arg753Gln during Candida sepsis in humans. Cytokine. 2008;41(3):322–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Van der Graaf CA, Netea MG, Morre SA, Den Heijer M, Verweij PE, Van der Meer JW, et al. Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur Cytokine Netw. 2006;17(1):29–34.PubMedGoogle Scholar
  45. 45.
    Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. 2009;361(18):1760–7.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Plantinga TS, van der Velden WJ, Ferwerda B, van Spriel AB, Adema G, Feuth T, et al. Early stop polymorphism in human DECTIN-1 is associated with increased candida colonization in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2009;49(5):724–32.CrossRefPubMedGoogle Scholar
  47. 47.
    Wojtowicz A, Gresnigt MS, Lecompte T, Bibert S, Manuel O, Joosten LA, et al. IL1B and DEFB1 polymorphisms increase susceptibility to invasive mold infection after solid-organ transplantation. J Infect Dis. 2015;211(10):1646–57.CrossRefPubMedGoogle Scholar
  48. 48.
    Jurevic RJ, Bai M, Chadwick RB, White TC, Dale BA. Single-nucleotide polymorphisms (SNPs) in human beta-defensin 1: high-throughput SNP assays and association with Candida carriage in type I diabetics and nondiabetic controls. J Clin Microbiol. 2003;41(1):90–6.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Choi EH, Foster CB, Taylor JG, Erichsen HC, Chen RA, Walsh TJ, et al. Association between chronic disseminated candidiasis in adult acute leukemia and common IL4 promoter haplotypes. J Infect Dis. 2003;187(7):1153–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Nahum A, Bates A, Sharfe N, Roifman CM. Association of the lymphoid protein tyrosine phosphatase, R620W variant, with chronic mucocutaneous candidiasis. J Allergy Clin Immunol. 2008;122(6):1220–2.CrossRefPubMedGoogle Scholar
  51. 51.
    Nahum A, Dadi H, Bates A, Roifman CM. The L412F variant of Toll-like receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. J Allergy Clin Immunol. 2011;127(2):528–31.CrossRefPubMedGoogle Scholar
  52. 52.
    Nahum A, Dadi H, Bates A, Roifman CM. The biological significance of TLR3 variant, L412F, in conferring susceptibility to cutaneous candidiasis. CMV and autoimmunity Autoimmun Rev. 2012;11(5):341–7.CrossRefPubMedGoogle Scholar
  53. 53.
    van Till JW, Modderman PW, de Boer M, Hart MH, Beld MG, Boermeester MA. Mannose-binding lectin deficiency facilitates abdominal Candida infections in patients with secondary peritonitis. Clin Vaccine Immunol. 2008;15(1):65–70.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Babula O, Lazdane G, Kroica J, Linhares IM, Ledger WJ, Witkin SS. Frequency of interleukin-4 (IL-4) -589 gene polymorphism and vaginal concentrations of IL-4, nitric oxide, and mannose-binding lectin in women with recurrent vulvovaginal candidiasis. Clin Infect Dis. 2005;40(9):1258–62.CrossRefPubMedGoogle Scholar
  55. 55.
    Babula O, Lazdane G, Kroica J, Ledger WJ, Witkin SS. Relation between recurrent vulvovaginal candidiasis, vaginal concentrations of mannose-binding lectin, and a mannose-binding lectin gene polymorphism in Latvian women. Clin Infect Dis. 2003;37(5):733–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Giraldo PC, Babula O, Goncalves AK, Linhares IM, Amaral RL, Ledger WJ, et al. Mannose-binding lectin gene polymorphism, vulvovaginal candidiasis, and bacterial vaginosis. Obstet Gynecol. 2007;109(5):1123–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Lev-Sagie A, Prus D, Linhares IM, Lavy Y, Ledger WJ, Witkin SS. Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome. Am J Obstet Gynecol. 2009;200(3):303.e1-6.CrossRefPubMedGoogle Scholar
  58. 58.
    Cunha C, Giovannini G, Pierini A, Bell AS, Sorci G, Riuzzi F, et al. Genetically-determined hyperfunction of the S100B/RAGE axis is a risk factor for aspergillosis in stem cell transplant recipients. PLoS One. 2011;6(11), e27962.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cunha C, Di Ianni M, Bozza S, Giovannini G, Zagarella S, Zelante T, et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood. 2010;116(24):5394–402.CrossRefPubMedGoogle Scholar
  60. 60.
    Sainz J, Lupianez CB, Segura-Catena J, Vazquez L, Rios R, Oyonarte S, et al. Dectin-1 and DC-SIGN polymorphisms associated with invasive pulmonary Aspergillosis infection. PLoS One. 2012;7(2), e32273.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mezger M, Steffens M, Beyer M, Manger C, Eberle J, Toliat MR, et al. Polymorphisms in the chemokine (C-X-C motif) ligand 10 are associated with invasive aspergillosis after allogeneic stem-cell transplantation and influence CXCL10 expression in monocyte-derived dendritic cells. Blood. 2008;111(2):534–6.CrossRefPubMedGoogle Scholar
  62. 62.
    Sainz J, Hassan L, Perez E, Romero A, Moratalla A, Lopez-Fernandez E, et al. Interleukin-10 promoter polymorphism as risk factor to develop invasive pulmonary aspergillosis. Immunol Lett. 2007;109(1):76–82.CrossRefPubMedGoogle Scholar
  63. 63.
    Seo KW, Kim DH, Sohn SK, Lee NY, Chang HH, Kim SW, et al. Protective role of interleukin-10 promoter gene polymorphism in the pathogenesis of invasive pulmonary aspergillosis after allogeneic stem cell transplantation. Bone Marrow Transplant. 2005;36(12):1089–95.CrossRefPubMedGoogle Scholar
  64. 64.
    Crosdale DJ, Poulton KV, Ollier WE, Thomson W, Denning DW. Mannose-binding lectin gene polymorphisms as a susceptibility factor for chronic necrotizing pulmonary aspergillosis. J Infect Dis. 2001;184(5):653–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Granell M, Urbano-Ispizua A, Suarez B, Rovira M, Fernandez-Aviles F, Martinez C, et al. Mannan-binding lectin pathway deficiencies and invasive fungal infections following allogeneic stem cell transplantation. Exp Hematol. 2006;34(10):1435–41.CrossRefPubMedGoogle Scholar
  66. 66.
    Zaas AK, Liao G, Chien JW, Weinberg C, Shore D, Giles SS, et al. Plasminogen alleles influence susceptibility to invasive aspergillosis. PLoS Genet. 2008;4(6), e1000101.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.•
    Cunha C, Aversa F, Lacerda JF, Busca A, Kurzai O, Grube M, et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med. 2014;370(5):421–32. Hematopoetic stem cell transplant recipients who received a donor with a homozygous haplotype in PTX3 were associated with an increased risk of invasive aspergillosis, which was linked to a deficiency in PTX3 and diminished anti-fungal capabilities of neutrophils. Google Scholar
  68. 68.
    Kesh S, Mensah NY, Peterlongo P, Jaffe D, Hsu K, Van Den Brink M, et al. TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann N Y Acad Sci. 2005;1062:95–103.CrossRefPubMedGoogle Scholar
  69. 69.
    Carvalho A, De Luca A, Bozza S, Cunha C, D’Angelo C, Moretti S, et al. TLR3 essentially promotes protective class I-restricted memory CD8(+) T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood. 2012;119(4):967–77.CrossRefPubMedGoogle Scholar
  70. 70.
    Bochud PY, Chien JW, Marr KA, Leisenring WM, Upton A, Janer M, et al. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med. 2008;359(17):1766–77.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.•
    Koldehoff M, Beelen DW, Elmaagacli AH. Increased susceptibility for aspergillosis and post-transplant immune deficiency in patients with gene variants of TLR4 after stem cell transplantation. Transpl Infect Dis. 2013;15(5):533–9. This paper demonstrated an association between specific TLR4 haplotypes and the risk for invasive aspergillosis in recipients of hematopoietic stem cell transplants, implicating the need for optimized prevention and screening strategies in this population. Google Scholar
  72. 72.
    Sainz J, Salas-Alvarado I, Lopez-Fernandez E, Olmedo C, Comino A, Garcia F, et al. TNFR1 mRNA expression level and TNFR1 gene polymorphisms are predictive markers for susceptibility to develop invasive pulmonary aspergillosis. Int J Immunopathol Pharmacol. 2010;23(2):423–36.PubMedGoogle Scholar
  73. 73.
    Sainz J, Perez E, Hassan L, Moratalla A, Romero A, Collado MD, et al. Variable number of tandem repeats of TNF receptor type 2 promoter as genetic biomarker of susceptibility to develop invasive pulmonary aspergillosis. Hum Immunol. 2007;68(1):41–50.CrossRefPubMedGoogle Scholar
  74. 74.
    Hu XP, Wu JQ, Zhu LP, Wang X, Xu B, Wang RY, et al. Association of Fc gamma receptor IIB polymorphism with cryptococcal meningitis in HIV-uninfected Chinese patients. PLoS One. 2012;7(8), e42439.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.•
    Rohatgi S, Gohil S, Kuniholm MH, Schultz H, Dufaud C, Armour KL, et al. Fc gamma receptor 3A polymorphism and risk for HIV-associated cryptococcal disease. MBio. 2013;4(5):e00573–13. This study demonstrated a significant association between the FCGR3A 158V allele and cryptococcal disease risk in HIV-infected individuals, which extends previous studies that show the same association in HIV-uninfected patients. Google Scholar
  76. 76.
    Jirapongsananuruk O, Luangwedchakarn V, Niemela JE, Pacharn P, Visitsunthorn N, Thepthai C, et al. Cryptococcal osteomyelitis in a child with a novel compound mutation of the IL12RB1 gene. Asian Pac J Allergy Immunol. 2012;30(1):79–82.PubMedGoogle Scholar
  77. 77.
    Ou XT, Wu JQ, Zhu LP, Guan M, Xu B, Hu XP, et al. Genotypes coding for mannose-binding lectin deficiency correlated with cryptococcal meningitis in HIV-uninfected Chinese patients. J Infect Dis. 2011;203(11):1686–91.CrossRefPubMedGoogle Scholar
  78. 78.
    Wang X, van de Veerdonk FL, Netea MG. Basic genetics and immunology of Candida infections. Infect Dis Clin North Am. 2016;30(1):85–102.CrossRefPubMedGoogle Scholar
  79. 79.
    Netea MG, van de Veerdonk F, Verschueren I, van der Meer JW, Kullberg BJ. Role of TLR1 and TLR6 in the host defense against disseminated candidiasis. FEMS Immunol Med Microbiol. 2008;52(1):118–23.CrossRefPubMedGoogle Scholar
  80. 80.
    Sun RT, Tian WJ, Xing XW, Gao SH, Wang SB. Association of cytokine gene polymorphisms with susceptibility to invasive candidiasis. Genet Mol Res. 2015;14(2):6859–64.CrossRefPubMedGoogle Scholar
  81. 81.•
    Wojtowicz A, Tissot F, Lamoth F, Orasch C, Eggimann P, Siegemund M, et al. Polymorphisms in tumor necrosis factor-alpha increase susceptibility to intra-abdominal Candida infection in high-risk surgical ICU patients. Crit Care Med. 2014;42(4):e304–8. The authors identified that genetic variations in tumor necrosis factor-alpha are associated with susceptibility to intra-abdominal Candida infection in a cohort of high risk, non-neutropenic patients. Google Scholar
  82. 82.
    Kumar V, Cheng SC, Johnson MD, Smeekens SP, Wojtowicz A, Giamarellos-Bourboulis E, et al. Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. Nat Commun. 2014;5:4675.CrossRefPubMedGoogle Scholar
  83. 83.
    Ok M, Einsele H, Loeffler J. Genetic susceptibility to Aspergillus fumigatus infections. Int J Med Microbiol. 2011;301(5):445–52.CrossRefPubMedGoogle Scholar
  84. 84.
    Braedel S, Radsak M, Einsele H, Latge JP, Michan A, Loeffler J, et al. Aspergillus fumigatus antigens activate innate immune cells via toll-like receptors 2 and 4. Br J Haematol. 2004;125(3):392–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Meier A, Kirschning CJ, Nikolaus T, Wagner H, Heesemann J, Ebel F. Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell Microbiol. 2003;5(8):561–70.CrossRefPubMedGoogle Scholar
  86. 86.
    Netea MG, Warris A, Van der Meer JW, Fenton MJ, Verver-Janssen TJ, Jacobs LE, et al. Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis. 2003;188(2):320–6.CrossRefPubMedGoogle Scholar
  87. 87.
    Imahara SD, Jelacic S, Junker CE, O’Keefe GE. The TLR4 +896 polymorphism is not associated with lipopolysaccharide hypo-responsiveness in leukocytes. Genes Immun. 2005;6(1):37–43.PubMedGoogle Scholar
  88. 88.
    Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000;25(2):187–91.CrossRefPubMedGoogle Scholar
  89. 89.
    van der Graaf C, Kullberg BJ, Joosten L, Verver-Jansen T, Jacobs L, Van der Meer JW, et al. Functional consequences of the Asp299Gly Toll-like receptor-4 polymorphism. Cytokine. 2005;30(5):264–8.CrossRefPubMedGoogle Scholar
  90. 90.
    Sainz J, Perez E, Gomez-Lopera S, Jurado M. IL1 gene cluster polymorphisms and its haplotypes may predict the risk to develop invasive pulmonary aspergillosis and modulate C-reactive protein level. J Clin Immunol. 2008;28(5):473–85.CrossRefPubMedGoogle Scholar
  91. 91.
    Steele C, Rapaka RR, Metz A, Pop SM, Williams DL, Gordon S, et al. The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog. 2005;1(4), e42.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Werner JL, Metz AE, Horn D, Schoeb TR, Hewitt MM, Schwiebert LM, et al. Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol. 2009;182(8):4938–46.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Perfect JR, Bicanic T. Cryptococcosis diagnosis and treatment: what do we know now. Fungal Genet Biol. 2015;78:49–54.CrossRefPubMedGoogle Scholar
  94. 94.
    Centers for Disease Control and Prevention. C. neoformans infection statistics 2015. Available from: http://www.cdc.gov/fungal/diseases/cryptococcosis-neoformans/statistics.html.
  95. 95.
    Chen Y, Litvintseva AP, Frazzitta AE, Haverkamp MR, Wang L, Fang C, et al. Comparative analyses of clinical and environmental populations of Cryptococcus neoformans in Botswana. Mol Ecol. 2015;24(14):3559–71.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Netea MG, Brouwer AE, Hoogendoorn EH, Van der Meer JW, Koolen M, Verweij PE, et al. Two patients with cryptococcal meningitis and idiopathic CD4 lymphopenia: defective cytokine production and reversal by recombinant interferon-gamma therapy. Clin Infect Dis. 2004;39(9):e83–7.CrossRefPubMedGoogle Scholar
  97. 97.
    Browne SK, Burbelo PD, Chetchotisakd P, Suputtamongkol Y, Kiertiburanakul S, Shaw PA, et al. Adult-onset immunodeficiency in Thailand and Taiwan. N Engl J Med. 2012;367(8):725–34.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Saijo T, Chen J, Chen SC, Rosen LB, Yi J, Sorrell TC, et al. Anti-granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by Cryptococcus gattii in otherwise immunocompetent patients. MBio. 2014;5(2):e00912–14.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Chen S, Sorrell T, Nimmo G, Speed B, Currie B, Ellis D, et al. Epidemiology and host- and variety-dependent characteristics of infection due to Cryptococcus neoformans in Australia and New Zealand. Australasian Cryptococcal Study Group. Clin Infect Dis. 2000;31(2):499–508.CrossRefPubMedGoogle Scholar
  100. 100.
    Meletiadis J, Walsh TJ, Choi EH, Pappas PG, Ennis D, Douglas J, et al. Study of common functional genetic polymorphisms of FCGR2A, 3A and 3B genes and the risk for cryptococcosis in HIV-uninfected patients. Med Mycol. 2007;45(6):513–8.CrossRefPubMedGoogle Scholar
  101. 101.
    Cunha C, Kurzai O, Carvalho A. PTX3 deficiency and aspergillosis. N Engl J Med. 2014;370(17):1666–7.PubMedGoogle Scholar
  102. 102.
    Chapman SJ, Hill AV. Human genetic susceptibility to infectious disease. Nat Rev Genet. 2012;13(3):175–88.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Stacey A. Maskarinec
    • 1
    • 2
  • Melissa D. Johnson
    • 1
    • 3
    • 4
  • John R. Perfect
    • 1
    • 2
    Email author
  1. 1.Division of Infectious Diseases and International Health, Department of MedicineDuke University Medical CenterDurhamUSA
  2. 2.Hanes HouseDurhamUSA
  3. 3.Department of Clinical ResearchCampbell University College of Pharmacy & Health SciencesBuies CreekUSA
  4. 4.Duke University Medical CenterDurhamUSA

Personalised recommendations