Advertisement

Essential dimension of inifinitesimal commutative unipotent group schemes

  • Dajano TossiciEmail author
Article
  • 3 Downloads

Abstract

We propose a generalization of Ledet’s conjecture, which predicts the essential dimension of cyclic p-groups in characteristic p, for finite commutative unipotent group schemes. And we present some evidence for this conjecture and discuss some consequences.

Keywords

Group schemes Torsors Essential dimension 

Mathematics Subject Classification

14L15 14L30 14F20 

Notes

Acknowledgements

I would like to thank A. Vistoli for useful comments and conversations. I also acknowledge the help of the referee to improve the exposition of this article. I have been partially supported by the project ANR-10-JCJC 0107 from the Agence Nationale de la Recherche. This work was partly elaborated during a stay at Max Planck Institute of Bonn.

References

  1. 1.
    Berhuy, G., Favi, G.: Essential dimension: a functorial point of view (after A. Merkurjev). Doc. Math. 8, 279–330 (2003). (electronic)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Buhler, J., Reichstein, Z.: On the essential dimension of a finite group. Compos. Math. 106(2), 159–179 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brosnan, P.: The essential dimension of a g-dimensional complex abelian variety is 2g. Transfomr. Groups 12(3), 437–441 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brosnan, P., Sreekantan, R.: Essential dimension of abelian varieties over number fields. C. R. Math. Acad. Sci. Paris 346(7–8), 417–420 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Demazure, M., Gabriel, P.: Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Masson & Cie, Éditeur, Paris, (1970). Avec un appendice ıt Corps de classes local par Michiel HazewinkelGoogle Scholar
  6. 6.
    Ledet, A.: On the Essential Dimension of \(p\)-Groups. Galois Theory and Modular Forms. Dev. Math., vol. 11, pp. 159–172. Kluwer Academic Publishers, Aarhus (2004)CrossRefGoogle Scholar
  7. 7.
    Ledet, A.: Finite group schemes of essential dimension one. J. Algebra 311, 31–37 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Milne, J.S.: Étale Cohomology. Princeton Mathematical Series, vol. 33. Princeton University Press, Princeton (1980)Google Scholar
  9. 9.
    Mumford, D.: Abelian Varieties, vol. 5. Hindustan Book Agency, New Delhi (1974). (with appendices by C. P. Ramanujam and Yuri Manin)zbMATHGoogle Scholar
  10. 10.
    Raynaud, M.: Faisceaux amples sur les schémas en groupes et les espaces homogènes. Lecture Notes in Mathematics, Vol. 119. Springer, Berlin-New York (1970)Google Scholar
  11. 11.
    Reichstein, Z.: On the notion of essential dimension for algebraic groups. Transform. Groups 5(3), 265–304 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tossici, D., Vistoli, A.: On the essential dimension of infinitesimal group schemes. Am. J. Math. 135(1), 103–114 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Unione Matematica Italiana 2019

Authors and Affiliations

  1. 1.Institut de Mathématiques de BordeauxTalenceFrance

Personalised recommendations