First Chern class and birational germs of Kato surfaces

  • Massimiliano PontecorvoEmail author


We describe some relations between coefficients of irreducible components of the first Chern class (Fujiki and Pontecorvo in J Geom Phys 91:117–130, 2015) and birational germs introduced by Dloussky (J Math Pures Appl 106:76–122, 2016) for intermediate Kato surfaces.



We thank the anonimous referee for several useful comments which improved the exposition of this work.


  1. 1.
    Apostolov, V.: Bihermitian surfaces with odd first Betti number. Math. Z. 238, 555–568 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barth, W., Hulek, K., Peters, C., Van de Ven, A.: Compact Complex Surfaces, 2nd edn. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dloussky, G.: Structure des surfaces de Kato. Mémoires dela S.M.F., vol. 112, p. 14 (1984)Google Scholar
  4. 4.
    Dloussky, G.: Quadratic forms and singularities of genus one or two. Ann. Fac. Sci. Toulouse XX, 15–69 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dloussky, G.: From non-Kählerian surfaces to Cremona group of \(P^2(C)\). Complex Manifolds 1, 1–33 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dloussky, G.: Special birational structures on non-Kählerian complex surfaces. J. Math. Pures Appl. 106, 76–122 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dloussky, G., Oeljeklaus, K.: Vector fields and foliations an compact surfaces of class \(VII_0\). Ann. Inst. Fourier 49, 1503–1545 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dloussky, G., Oeljeklaus, K., Toma, M.: Class \(\text{ VII }_0\) surfaces with \(b_2\) curves. Tohoku Math. J. (2) 55, 283–309 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Favre, C.: Classification of 2-dimensional contracting rigid germs. J. Math. Pure Appl. 79, 475–514 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fujiki, A., Pontecorvo, M.: Anti-self-dual bihermitian structures on Inoue surfaces. J. Differ. Geom. 85(1), 15–71 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fujiki, A., Pontecorvo, M.: Numerically anticanonical divisors and Kato surfaces. J. Geom. Phys. 91, 117–130 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kato, M.: Compact complex manifolds containing global spherical shells. In: I. Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), pp. 45–84, Kinokuniya Book Store, Tokyo (1978)Google Scholar
  13. 13.
    Kato, Ma.: On surfaces of class \(\text{ VII }_0\) with curves, II. Tôhoku Math. J. 42, 475–516 (1990)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Oeljeklaus, K., Toma, M.: Logarithmic moduli spaces for surfaces of class \(VII\). Math. Ann. 341(2008), 323–345 (2009). arXiv:math/0701840v2 MathSciNetzbMATHGoogle Scholar
  15. 15.
    Pontecorvo, M.: Complex structures on Riemannian four-manifolds. Math. Ann. 309(1), 159–177 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Unione Matematica Italiana 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaRoma Tre UniversityRomeItaly

Personalised recommendations