Some progresses on Kähler–Ricci flow

  • Gang TianEmail author


We will discuss some recent results on long-time behavior of Kähler–Ricci flow on compact Kähler manifolds with semi-positive canonical bundle. This is a very important part of the Analytic Minimal Model Program.


Kähler Ricci flow Volume comparison 


  1. 1.
    Cao, Huidong: Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81, 359–372 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Eyssidieux, P., Guedj, V., Zeriahi, A.: A priori \(L^{\infty }\)-estimates for degenerate complex Monge-Ampère equations. Int. Math. Res. Notice (2008)Google Scholar
  4. 4.
    Fong, F., Zhang, Z.: The collapsing rate of the Kähler-Ricci flow with regular infinite time singularity. J. Reine Angew. Math. 703, 95–113 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Guo, B., Song, J., Weinkove, B.: Geometric convergence of the Kähler-Ricci flow on complex surfaces of general type. IMRN 18, 5652–5669 (2016)CrossRefzbMATHGoogle Scholar
  6. 6.
    Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Diff. Geom. 17, 255–306 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hein, H.J., Tosatti, V.: Remarks on the collapsing of torus fibered Calabi-Yau manifolds. Bull. Lond. Math. Soc. 47, 1021–1027 (2015)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Jian, W.J.: Convergence of scalar curvature of Kähler-Ricci flow on manifolds of positive Kodaira dimension, preprint (2018)Google Scholar
  9. 9.
    Kawamata, Y.: The cone of curves of algebraic varieties. Ann. Math. 119, 603–633 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, preprint, math.DG/0211159Google Scholar
  11. 11.
    Song, J.: Riemannian Geometry of Kähler-Einstein currents, preprint, arXiv:1404.0445
  12. 12.
    Song, J., Tian, G.: The Kähler–Ricci flow on minimal surfaces of positive Kodaira dimension. Invent. Math. 170, 609–653 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Song, J., Tian, G.: Canonical measures and Kähler–Ricci flow. J. Am. Math. Soc. 25, 303–353 (2012)CrossRefzbMATHGoogle Scholar
  14. 14.
    Song, J., Tian, G.: Bounding scalar curvature for global solutions of the Kähler–Ricci flow. Am. J. Math. 138, 683–695 (2016)CrossRefzbMATHGoogle Scholar
  15. 15.
    Tian, G.: On the existence of solutions of a class of Monge-Ampre equations. Acta Math. Sinica 4(3), 250–265 (1988)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tian, G.: Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical aspects of string theory (San Diego, Calif.), World Sci. Publishing, Singapore, pp. 629–646 (1986)Google Scholar
  17. 17.
    Tian, G.: New progresses and results on Kähler–Ricci flow, Géométrie différentielle, physique mathématique, mathématiques et société. II. Astérisque, No.322, 71–92 (2008)Google Scholar
  18. 18.
    Tian, G., Zhang, Z.: On the Kähler–Ricci flow on projective manifolds of general type. Chin. Ann. Math. Ser. B 27(2), 179–192 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Tian, G., Zhang, Z.L.: Convergence of Khler-Ricci flow on lower-dimensional algebraic manifolds of general type. IMRN 21, 6493–6511 (2016)CrossRefzbMATHGoogle Scholar
  20. 20.
    Tian, G., Zhang, Z.L.: Relative volume comparison of Ricci Flow and its applications, preprint (2018)Google Scholar
  21. 21.
    Tosatti, V., Weinkove, B., Yang, X.K.: The Kähler–Ricci flow, Ricci-flat metrics and collapsing limits, arXiv:1408.0161
  22. 22.
    Tosatti, V., Zhang, Y.G.: Infinite time singularities of the Kähler-Ricci flow. Geom. Topol. 19, 2925–2948 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tsuji, H.: Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281(1), 123–133 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, B.: The local entropy along Ricci flow, preprint (2017)Google Scholar
  25. 25.
    Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Commun. Pure Appl. Math. 31, 339–411 (1978)CrossRefzbMATHGoogle Scholar
  26. 26.
    Zhang, Q.: Bounds of volume growth of geodesic balls under Ricci flow. Math. Res. Lett. 19, 245–253 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhang, Y.S.: Collapsing limits of the Kähler-Ricci flow and the continuity method, preprint, arXiv:1705.01434
  28. 28.
    Zhang, Z.: On degenerate Monge-Ampère equations over closed Kähler manifolds. Int. Math. Res. Notice (2006)Google Scholar

Copyright information

© Unione Matematica Italiana 2018

Authors and Affiliations

  1. 1.Peking UniversityBeijingChina

Personalised recommendations