Advertisement

Bollettino dell'Unione Matematica Italiana

, Volume 10, Issue 3, pp 335–354 | Cite as

Stable carbon configurations

  • Ulisse StefanelliEmail author
Article

Abstract

Molecular Mechanics models molecules as configurations of particles interacting via classical potentials. The specific geometry of covalent bonding in carbon is described by the combination of an attractive-repulsive two-body interaction and a three-body bond-orientation part. We investigate the strict local minimality of specific carbon configurations under general assumptions on the interaction potentials. Carbyne, graphene, some fullerenes, and diamond are proved to be stable.

Keywords

Configurational energy Carbon Stability 

Mathematics Subject Classification

82D25 

Notes

Acknowledgments

The support of the Austrian Science Fund (FWF) Projects P 27052 and I 2375 is acknowledged. This work has been Funded by the Vienna Science and Technology Fund (WWTF) through Project MA14-009. Partial support by the Wolfgang Pauli Institute under the thematic project Crystals, Polymers, Materials is also acknowledged. The author is greatefully indebted to the anonymous referee for the careful reading of the manuscript.

References

  1. 1.
    Allinger, N.L.: Molecular Structure: Understanding Steric and Electronic Effects from Molecular Mechanics. Wiley, Amsterdam (2010)CrossRefGoogle Scholar
  2. 2.
    Yeung, A.Y., Friesecke, G., Schmidt, B.: Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff-shape. Calc. Var. Partial Differ. Equ. 44, 81–100 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baughman, R.H.: Dangerously seeking linear carbon. Science 312(5776), 1009–1110 (2006)CrossRefGoogle Scholar
  4. 4.
    Brenner, D.W.: Empirical potential for hydrocarbons for use in stimulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)CrossRefGoogle Scholar
  5. 5.
    Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B.: A second-generation reactive empitical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Mater. 14, 783–802 (2002)CrossRefGoogle Scholar
  6. 6.
    Brook, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)CrossRefGoogle Scholar
  7. 7.
    Bundy, F.P., Kasper, J.S.: Hexagonal diamond: a new form of carbon. J. Chem. Phys. 46, 3437 (1967)CrossRefGoogle Scholar
  8. 8.
    Butenko, Y., Siller, L., Hunt, M.R.C.: Carbon onions. In: Gogotsi, Y., Presser, V. (eds.) Carbon Nanomaterials, pp. 279–302. CRC Press, New York (2014)Google Scholar
  9. 9.
    Campbell, E.K., Holz, M., Gerlic, D., Maier, J.P.: Laboratory confirmation of \(C_{60}^+\) as the carrier of two diffuse interstellar bands. Nature 523, 322323 (2015)CrossRefGoogle Scholar
  10. 10.
    Chandraseker, K., Mukherjee, S., Paci, J.T., Schatz, G.C.: An atomistic-continuum Cosserat rod model of carbon nanotubes. J. Mech. Phys. Solids 57, 932–958 (2009)CrossRefGoogle Scholar
  11. 11.
    Clark, M., Cramer III, R.D., Van Opdenbosch, N.: Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 10, 982–1012 (1989)CrossRefGoogle Scholar
  12. 12.
    Clayden, J., Greeves, N., Warren, S.G.: Organic Chemistry. Oxford University Press, Oxford (2012)Google Scholar
  13. 13.
    Cox, B.J., Hill, J.M.: Exact and approximate geometric parameters for carbon nanotubes incorporating curvature. Carbon 45, 1453–1462 (2007)CrossRefGoogle Scholar
  14. 14.
    David, W.I.F., Ibberson, R.M., Matthewman, J.C., Prassides, K., Dennis, T.J.S., Hare, J.P., Kroto, H.W., Taylor, R., Walton, D.R.M.: Crystal structure and bonding of \(C_{60}\). Nature 353, 147–149 (1991)CrossRefGoogle Scholar
  15. 15.
    Davoli, E., Piovano, P., Stefanelli, U.: Sharp \(N^{3/4}\) law for the minimizers of the edge-isoperimetric problem on the triangular lattice. Preprint http://cvgmt.sns.it/paper/2862/. Submitted 2015
  16. 16.
    Davoli, E., Piovano, P., Stefanelli, U.: Wulff shape emergence in graphene. Math. Models Methods Appl. Sci. (2016). doi: 10.1142/S0218202516500536
  17. 17.
    Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Carbon fibers based on \(C_{60}\) ad their symmetry. Phys. Rev. B 45(11), 6234–6242 (1992)CrossRefGoogle Scholar
  18. 18.
    Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Physics of carbon nanotubes. Carbon 33, 883–891 (1995)CrossRefGoogle Scholar
  19. 19.
    Weinan, E., Li, D.: On the crystallization of 2D hexagonal lattices. Commun. Math. Phys. 286, 1099–1140 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Farmer, B., Esedo\(\bar{\rm g}\)lu, S., Smereka, P.: Crystallization for a Brenner-like potential. Commun. Math. Phys. (2016). doi: 10.1007/s00220-016-2732-6
  21. 21.
    Flatley, L.C., Theil, F.: Face-centered cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 218, 363–416 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Friedrich, M., Piovano, P., Stefanelli, U.: The geometry of \(C_{60}\): a rigorous approach via molecular mechanics. SIAM J. Appl. Math. (2016, to appear)Google Scholar
  23. 23.
    Friesecke, G., Theil, F.: Molecular Geometry Optimization, Models. In: Engquist, B. (ed.) Encyclopedia of Applied and Computational Mathematics, pp. 951–957. Springer, New York (2015)Google Scholar
  24. 24.
    Gajbhiye, S.O., Singh, S.P.: Vibration characteristics of open- and capped-end single-walled carbon nanotubes using multi-scale analysis technique incorporating Tersoff-Brenner potential. Acta Mech. 226, 3565–3586 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    van Gunsteren, W.F., Berendsen, H.J.C.: Groningen Molecular Simulation (GROMOS) Library Manual. BIOMOS b.v, Groningen (1987)Google Scholar
  26. 26.
    Guo, H., Liu, R., Zeng, X.C., Wu, X.: Graphene-based architecture and assemblies. In: Jiang, D.-E., Chen, Z. (eds.) Graphene Chemistry: Theoretical Perspectives, pp. 153–182. Wiley, Amsterdam (2013)CrossRefGoogle Scholar
  27. 27.
    Hanson, J.C., Nordman, C.E.: The crystal and molecular structure of corannulene, \(C_{20}H_{10}\). Acta Cryst. B32, 1147–1153 (1976)CrossRefGoogle Scholar
  28. 28.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  29. 29.
    Itoh, M., Kotani, K., Naito, H., Sunada, T., Kawazoe, Y., Adschiri, T.: New metallic carbon crystal. Phys. Rev. Lett. 102, 055703 (2009)CrossRefGoogle Scholar
  30. 30.
    Itzhaki, L., Altus, E., Basch, H., Hoz, S.: Harder than diamond: determining the cross-sectional area and young’s modulus of molecular rods. Angew. Chem. 117, 7598 (2005)CrossRefGoogle Scholar
  31. 31.
    Itzhaki, L., Altus, E., Basch, H., Hoz, S.: Harder than diamond: determining the cross-sectional area and young’s modulus of molecular rods. Angew. Chem. Int. Ed. 44, 7432–7435 (2005)CrossRefGoogle Scholar
  32. 32.
    Jiang, H., Zhang, P., Liu, B., Huans, Y., Geubelle, P.H., Gao, H., Hwang, K.C.: The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Math. Sci. 28, 429–442 (2003)CrossRefGoogle Scholar
  33. 33.
    Jishi, R.A., Dresselhaus, M.S., Dresselhaus, G.: Symmetry properties and chiral carbon nanotubes. Phys. Rev. B 47, 166671–166674 (1993)CrossRefGoogle Scholar
  34. 34.
    Kamatgalimov, A.R., Kovalenko, V.I.: Deformation and thermodynamic instability of a \(C_{84}\) fullerene cage. Russ. J. Phys. Chem. A 84, 4L721–4L726 (2010)Google Scholar
  35. 35.
    Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C 60: buckminsterfullerene. Nature 318, 162–163 (1985)CrossRefGoogle Scholar
  36. 36.
    Kroto, H.W.: The stability of the fullerenes \(C_n\), with \(n=24, 28, 32, 36, 50, 60\) and 70. Nature 329, 529–531 (1987)CrossRefGoogle Scholar
  37. 37.
    Lazzaroni, G., Stefanelli, U.: Chain-like ground states in three dimensions. (2016, in preparation)Google Scholar
  38. 38.
    Lee, R.K.F., Cox, B.J., Hill, J.M.: General rolled-up and polyhedral models for carbon nanotubes. Fuller. Nanot. Car. N. 19, 726–748 (2011)CrossRefGoogle Scholar
  39. 39.
    Lewars, E.G.: Computational Chemistry, 2nd edn. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  40. 40.
    Lin, F., Sørensen, E., Kallin, C., Berlinsky, J.: \(C_{20}\), the smallest fullerene. In: Sattler, D. (ed.) Handbook of Nanophysics: Clusters and Fullerenes. CRC Press, Taylor & Francis, New York (2010)Google Scholar
  41. 41.
    Liu, M., Artyukhov, V.I., Lee, H., Xu, F., Yakobson, B.I.: Carbyne from first principles: chain of \(C\) atoms, a nanorod or a nanorope? ACS Nano 7, 10075–10082 (2013)CrossRefGoogle Scholar
  42. 42.
    Mackay, A.L., Terrones, H.: Diamond from graphite. Nature 35, 762 (1991)CrossRefGoogle Scholar
  43. 43.
    Mainini, E., Piovano, P., Stefanelli, U.: Finite crystallization in the square lattice. Nonlinearity 27, 717–737 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Mainini, E., Murakawa, H., Piovano, P., Stefanelli, U.: A numerical investigation on carbonnanotube geometries. Discr. Contin. Dyn. Syst. Ser. - S. (2016, to appear)Google Scholar
  45. 45.
    Mainini, E., Murakawa, H., Piovano, P., Stefanelli, U.: Carbon-nanotube geometries as optimal configurations. Submitted (2016)Google Scholar
  46. 46.
    Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures. Commun. Math. Phys. 328, 545–571 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Mayo, S.L., Olafson, B.D., Goddard, W.A.: DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990)CrossRefGoogle Scholar
  48. 48.
    El Kass, D., Monneau, R.: Atomic to continuum passage for nanotubes: a discrete Saint–Venant principle and error estimates. Arch. Ration. Mech. Anal. 213, 25–128 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Nasibulin, A.G., et al.: A novel hybrid carbon material. Nature Nanotechnol. 2, 156–161 (2007)CrossRefGoogle Scholar
  50. 50.
    Rappé, A.K., Casewit, C.L.: Molecular Mechanics Across Chemistry. University Science Books, Sausalito, CA (1997)Google Scholar
  51. 51.
    Robertson, D.H., Brenner, D.W., Mintmire, J.W.: Energetics of nanoscale graphitic tubules. Phys. Rev. B 45, 12592–12595 (1992)CrossRefGoogle Scholar
  52. 52.
    Schein, S., Friedrich, T.: A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule for fullerenes with more than 60 vertices. Proc. Natl. Acad. Sci. USA 105, 19142–19147 (2008)CrossRefGoogle Scholar
  53. 53.
    Schmidt, B.: Ground states of the 2D sticky disc model: fine properties and \(N^{3/4}\) law for the deviation from the asymptotic Wulff-shape. J. Stat. Phys. 153, 727–738 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 8, 5262–5271 (1985)CrossRefGoogle Scholar
  55. 55.
    Sunada, T.: Crystals that nature might miss creating. Notices Am. Math. Soc. 55, 208–215 (2008)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988)CrossRefGoogle Scholar
  57. 57.
    Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262, 209–236 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Vázquez, S., Camps, P.: Chemistry of pyramidalized alkenes. Tetrahedron 61, 5147–5208 (2005)CrossRefGoogle Scholar
  59. 59.
    Wade, L.G.: Organic Chemistry, 8th edn. Pearson Prentice Hall, New York (2012)Google Scholar
  60. 60.
    Weiner, P.K., Kollman, P.A.: AMBER: assisted model building with energy refinement. A general program for modeling molecules and their interactions. J. Comput. Chem. 2, 287–303 (1981)CrossRefGoogle Scholar
  61. 61.
    Yakobson, B.I., Campbell, M.P., Brabec, C.J., Bernholc, J.: High strain rate fracture and \(C\)-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348 (1997)CrossRefGoogle Scholar

Copyright information

© Unione Matematica Italiana 2016

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria
  2. 2.Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” - CNRPaviaItaly

Personalised recommendations