Advertisement

Biomonitoring and Nonpersistent Chemicals—Understanding and Addressing Variability and Exposure Misclassification

  • Judy S. LaKind
  • Fadwa Idri
  • Daniel Q. Naiman
  • Marc-André VernerEmail author
Methods in Environmental Epidemiology (AZ Pollack and NJ Perkins, Section Editors)
  • 25 Downloads
Part of the following topical collections:
  1. Topical Collection on Methods in Environmental Epidemiology

Abstract

Purpose of Review

We offer here a review of intraindividual variability in urinary biomarkers for assessing exposure to nonpersistent chemicals. We provide thoughts on how to better evaluate exposure to nonpersistent chemicals.

Recent Findings

We summarized reported values of intraclass correlation coefficients and found that most values fall into categories that indicate only poor to good reproducibility. Even within the “good” classification, a large percentage of study participants is likely to be misclassified as to their exposure.

Summary

There is sufficient information to support the statement that studies using only one spot measurement of a nonpersistent chemical will be unreliable. It is unequivocal that multiple samples have to be collected over a period of toxicological relevance and with consideration of exposure patterns. Sponsors of research and researchers themselves should be vocal about ensuring that sufficient resources are made available to properly characterize exposures when studying nonpersistent chemicals. Otherwise, we will continue to see an ever-growing body of literature yielding inconsistent and/or uninterpretable results.

Keywords

Biomonitoring Nonpersistent Short-lived chemical Intraclass correlation coefficient (ICC) Exposure Epidemiology 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Donaldson SG, Van Oostdam J, Tikhonov C, Feeley M, Armstrong B, Ayotte P, et al. Environmental contaminants and human health in the Canadian Arctic. Sci Total Environ. 2010;408(22):5165–234.PubMedCrossRefGoogle Scholar
  2. 2.
    Patterson DG Jr, Wong LY, Turner WE, Caudill SP, Dipietro ES, McClure PC, et al. Levels in the U.S. population of those persistent organic pollutants (2003-2004) included in the Stockholm convention or in other long range transboundary air pollution agreements. Environ Sci Technol. 2009;43(4):1211–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Porta M, Puigdomenech E, Ballester F, Selva J, Ribas-Fito N, Llop S, et al. Monitoring concentrations of persistent organic pollutants in the general population: the international experience. Environ Int. 2008;34(4):546–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Verner MA, Bachelet D, McDougall R, Charbonneau M, Guenel P, Haddad S. A case study addressing the reliability of polychlorinated biphenyl levels measured at the time of breast cancer diagnosis in representing early-life exposure. Cancer Epidemiol Biomark Prev. 2011;20(2):281–6.CrossRefGoogle Scholar
  5. 5.
    Ruark CD, Song G, Yoon M, Verner MA, Andersen ME, Clewell HJ 3rd, et al. Quantitative bias analysis for epidemiological associations of perfluoroalkyl substance serum concentrations and early onset of menopause. Environ Int. 2017;99:245–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Emond C, Michalek JE, Birnbaum LS, DeVito MJ. Comparison of the use of a physiologically based pharmacokinetic model and a classical pharmacokinetic model for dioxin exposure assessments. Environ Health Perspect. 2005;113(12):1666–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Verner MA, Charbonneau M, Lopez-Carrillo L, Haddad S. Physiologically based pharmacokinetic modeling of persistent organic pollutants for lifetime exposure assessment: a new tool in breast cancer epidemiologic studies. Environ Health Perspect. 2008;116(7):886–92.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Haines DA, Saravanabhavan G, Werry K, Khoury C. An overview of human biomonitoring of environmental chemicals in the Canadian Health Measures Survey: 2007–2019. Int J Hyg Environ Health. 2017;220(2 Pt A):13–28.PubMedCrossRefGoogle Scholar
  9. 9.
    Calafat AM, Longnecker MP, Koch HM, Swan SH, Hauser R, Goldman LR, et al. Optimal exposure biomarkers for nonpersistent chemicals in environmental epidemiology. Environ Health Perspect. 2015;123(7):A166–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Barr DB, Wang RY, Needham LL. Biologic monitoring of exposure to environmental chemicals throughout the life stages: requirements and issues for consideration for the National Children’s Study. Environ Health Perspect. 2005;113(8):1083–91.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Goodman M, LaKind JS, Mattison DR. Do phthalates act as obesogens in humans? A systematic review of the epidemiological literature. Crit Rev Toxicol. 2014;44(2):151–75.PubMedCrossRefGoogle Scholar
  12. 12.
    Goodman M, Naiman DQ, LaKind JS. Systematic review of the literature on triclosan and health outcomes in humans. Crit Rev Toxicol. 2018;48(1):1–51.PubMedCrossRefGoogle Scholar
  13. 13.
    LaKind JS, Goodman M, Mattison DR. Bisphenol A and indicators of obesity, glucose metabolism/type 2 diabetes and cardiovascular disease: a systematic review of epidemiologic research. Crit Rev Toxicol. 2014;44(2):121–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Johns LE, Cooper GS, Galizia A, Meeker JD. Exposure assessment issues in epidemiology studies of phthalates. Environ Int. 2015;85:27–39.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    EFSA Panel on Plant Protection Products and their Residues, Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, et al. Scientific Opinion of the PPR Panel on thefollow-up of thefindings of the External Scientific Report‘Literature review of epidemiological studieslinking exposure to pesticides and health effects’. EFSA Journa. 2017;15(10):5007.Google Scholar
  16. 16.
    Pleil JD, Sobus JR. Estimating lifetime risk from spot biomarker data and intraclass correlation coefficients (ICC). J Toxicol Environ Health A. 2013;76(12):747–66.PubMedCrossRefGoogle Scholar
  17. 17.
    LaKind JS, Sobus JR, Goodman M, Barr DB, Furst P, Albertini RJ, et al. A proposal for assessing study quality: biomonitoring, environmental epidemiology, and short-lived chemicals (BEES-C) instrument. Environ Int. 2014;73:195–207.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Rosner B. Fundamentals of Biostatistics. 6th ed. Pacific Grove: Thomson Brooks/Cole; 2006.Google Scholar
  19. 19.
    Pollack AZ, Perkins NJ, Sjaarda L, Mumford SL, Kannan K, Philippat C, et al. Variability and exposure classification of urinary phenol and paraben metabolite concentrations in reproductive-aged women. Environ Res. 2016;151:513–20.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Philippat C, Wolff MS, Calafat AM, Ye X, Bausell R, Meadows M, et al. Prenatal exposure to environmental phenols: concentrations in amniotic fluid and variability in urinary concentrations during pregnancy. Environ Health Perspect. 2013;121(10):1225–31.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Teitelbaum SL, Britton JA, Calafat AM, Ye X, Silva MJ, Reidy JA, et al. Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ Res. 2008;106(2):257–69.PubMedCrossRefGoogle Scholar
  22. 22.
    Meeker JD, Cantonwine DE, Rivera-Gonzalez LO, Ferguson KK, Mukherjee B, Calafat AM, et al. Distribution, variability, and predictors of urinary concentrations of phenols and parabens among pregnant women in Puerto Rico. Environ Sci Technol. 2013;47(7):3439–47.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Vernet C, Philippat C, Calafat AM, Ye X, Lyon-Caen S, Siroux V, et al. Within-day, between-day, and between-week variability of urinary concentrations of phenol biomarkers in pregnant women. Environ Health Perspect. 2018;126(3):037005.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fromme H, Bolte G, Koch HM, Angerer J, Boehmer S, Drexler H, et al. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int J Hyg Environ Health. 2007;210(1):21–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Morgan MK, Sobus JR, Barr DB, Croghan CW, Chen FL, Walker R, et al. Temporal variability of pyrethroid metabolite levels in bedtime, morning, and 24-h urine samples for 50 adults in North Carolina. Environ Res. 2016;144(Pt A):81–91.PubMedCrossRefGoogle Scholar
  26. 26.
    Dewalque L, Pirard C, Vandepaer S, Charlier C. Temporal variability of urinary concentrations of phthalate metabolites, parabens and benzophenone-3 in a Belgian adult population. Environ Res. 2015;142:414–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Guidry VT, Longnecker MP, Aase H, Eggesbo M, Zeiner P, Reichborn-Kjennerud T, et al. Measurement of tSotal and free urinary phenol and paraben concentrations over the course of pregnancy: assessing reliability and contamination of specimens in the Norwegian mother and child cohort study. Environ Health Perspect. 2015;123(7):705–11.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Koch HM, Aylward LL, Hays SM, Smolders R, Moos RK, Cocker J, et al. Inter- and intra-individual variation in urinary biomarker concentrations over a 6-day sampling period. Part 2: personal care product ingredients. Toxicol Lett. 2014;231(2):261–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Lassen TH, Frederiksen H, Jensen TK, Petersen JH, Main KM, Skakkebaek NE, et al. Temporal variability in urinary excretion of bisphenol A and seven other phenols in spot, morning, and 24-h urine samples. Environ Res. 2013;126:164–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Sakhi AK, Sabaredzovic A, Papadopoulou E, Cequier E, Thomsen C. Levels, variability and determinants of environmental phenols in pairs of Norwegian mothers and children. Environ Int. 2018;114:242–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Braun JM, Kalkbrenner AE, Calafat AM, Bernert JT, Ye X, Silva MJ, et al. Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environ Health Perspect. 2011;119(1):131–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Aylward LL, Hays SM, Zidek A. Variation in urinary spot sample, 24 h samples, and longer-term average urinary concentrations of short-lived environmental chemicals: implications for exposure assessment and reverse dosimetry. J Expo Sci Environ Epidemiol. 2017;27(6):582–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Quiros-Alcala L, Eskenazi B, Bradman A, Ye X, Calafat AM, Harley K. Determinants of urinary bisphenol A concentrations in Mexican/Mexican--American pregnant women. Environ Int. 2013;59:152–60.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Reeves KW, Luo J, Hankinson SE, Hendryx M, Margolis KL, Manson JE, et al. Within-person variability of urinary bisphenol-A in postmenopausal women. Environ Res. 2014;135:285–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Townsend MK, Franke AA, Li X, Hu FB, Eliassen AH. Within-person reproducibility of urinary bisphenol A and phthalate metabolites over a 1 to 3 year period among women in the Nurses’ Health Studies: a prospective cohort study. Environ Health. 2013;12(1):80.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Cantonwine DE, Ferguson KK, Mukherjee B, McElrath TF, Meeker JD. Urinary bisphenol A levels during pregnancy and risk of preterm birth. Environ Health Perspect. 2015;123(9):895–901.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Fisher M, Arbuckle TE, Mallick R, LeBlanc A, Hauser R, Feeley M, et al. Bisphenol A and phthalate metabolite urinary concentrations: daily and across pregnancy variability. J Expo Sci Environ Epidemiol. 2015;25(3):231–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Cox KJ, Porucznik CA, Anderson DJ, Brozek EM, Szczotka KM, Bailey NM, et al. Exposure classification and temporal variability in urinary bisphenol A concentrations among couples in Utah--the HOPE study. Environ Health Perspect. 2016;124(4):498–506.PubMedCrossRefGoogle Scholar
  39. 39.
    Heffernan AL, Aylward LL, Samidurai AJ, Davies PS, Toms LM, Sly PD, et al. Short term variability in urinary bisphenol A in Australian children. Environ Int. 2014;68:139–43.PubMedCrossRefGoogle Scholar
  40. 40.
    Jusko TA, Shaw PA, Snijder CA, Pierik FH, Koch HM, Hauser R, et al. Reproducibility of urinary bisphenol A concentrations measured during pregnancy in the Generation R Study. J Expo Sci Environ Epidemiol. 2014;24(5):532–6.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Nepomnaschy PA, Baird DD, Weinberg CR, Hoppin JA, Longnecker MP, Wilcox AJ. Within-person variability in urinary bisphenol A concentrations: measurements from specimens after long-term frozen storage. Environ Res. 2009;109(6):734–7.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Spaan S, Pronk A, Koch HM, Jusko TA, Jaddoe VW, Shaw PA, et al. Reliability of concentrations of organophosphate pesticide metabolites in serial urine specimens from pregnancy in the Generation R Study. J Expo Sci Environ Epidemiol. 2015;25(3):286–94.PubMedCrossRefGoogle Scholar
  43. 43.
    Baird DD, Saldana TM, Nepomnaschy PA, Hoppin JA, Longnecker MP, Weinberg CR, et al. Within-person variability in urinary phthalate metabolite concentrations: measurements from specimens after long-term frozen storage. J Expo Sci Environ Epidemiol. 2010;20(2):169–75.PubMedCrossRefGoogle Scholar
  44. 44.
    Hoppin JA, Brock JW, Davis BJ, Baird DD. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect. 2002;110(5):515–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Peck JD, Sweeney AM, Symanski E, Gardiner J, Silva MJ, Calafat AM, et al. Intra- and inter-individual variability of urinary phthalate metabolite concentrations in Hmong women of reproductive age. J Expo Sci Environ Epidemiol. 2010;20(1):90–100.PubMedCrossRefGoogle Scholar
  46. 46.
    Suzuki Y, Niwa M, Yoshinaga J, Watanabe C, Mizumoto Y, Serizawa S, et al. Exposure assessment of phthalate esters in Japanese pregnant women by using urinary metabolite analysis. Environ Health Prev Med. 2009;14(3):180–7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Valvi D, Monfort N, Ventura R, Casas M, Casas L, Sunyer J, et al. Variability and predictors of urinary phthalate metabolites in Spanish pregnant women. Int J Hyg Environ Health. 2015;218(2):220–31.PubMedCrossRefGoogle Scholar
  48. 48.
    Watkins DJ, Eliot M, Sathyanarayana S, Calafat AM, Yolton K, Lanphear BP, et al. Variability and predictors of urinary concentrations of phthalate metabolites during early childhood. Environ Sci Technol. 2014;48(15):8881–90.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Frederiksen H, Kranich SK, Jorgensen N, Taboureau O, Petersen JH, Andersson AM. Temporal variability in urinary phthalate metabolite excretion based on spot, morning, and 24-h urine samples: considerations for epidemiological studies. Environ Sci Technol. 2013;47(2):958–67.PubMedCrossRefGoogle Scholar
  50. 50.
    Braun JM, Smith KW, Williams PL, Calafat AM, Berry K, Ehrlich S, et al. Variability of urinary phthalate metabolite and bisphenol A concentrations before and during pregnancy. Environ Health Perspect. 2012;120(5):739–45.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ferguson KK, McElrath TF, Ko YA, Mukherjee B, Meeker JD. Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth. Environ Int. 2014;70:118–24.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Preau JL Jr, Wong LY, Silva MJ, Needham LL, Calafat AM. Variability over 1 week in the urinary concentrations of metabolites of diethyl phthalate and di(2-ethylhexyl) phthalate among eight adults: an observational study. Environ Health Perspect. 2010;118(12):1748–54.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bertelsen RJ, Engel SM, Jusko TA, Calafat AM, Hoppin JA, London SJ, et al. Reliability of triclosan measures in repeated urine samples from Norwegian pregnant women. J Expo Sci Environ Epidemiol. 2014;24(5):517–21.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Weiss L, Arbuckle TE, Fisher M, Ramsay T, Mallick R, Hauser R, et al. Temporal variability and sources of triclosan exposure in pregnancy. Int J Hyg Environ Health. 2015;218(6):507–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Attfield KR, Hughes MD, Spengler JD, Lu C. Within- and between-child variation in repeated urinary pesticide metabolite measurements over a 1-year period. Environ Health Perspect. 2014;122(2):201–6.PubMedCrossRefGoogle Scholar
  56. 56.
    • Morgan MK, Nash M, Barr DB, Starr JM, Scott Clifton M, Sobus JR. Distribution, variability, and predictors of urinary bisphenol A levels in 50 North Carolina adults over a six-week monitoring period. Environ Int. 2018;112:85–99 This study collected multiple urine sample types (bedtime, morning, 24-hour), environmental samples (food, surface wipes, drinking water) and food/activity diaries over two consecutive weeks, and another week one month later. The number of samples required to obtain a reliable biomarker (ICC=0.80) was assessed for different exposure periods and sample types.PubMedCrossRefGoogle Scholar
  57. 57.
    • Perrier F, Giorgis-Allemand L, Slama R, Philippat C. Within-subject pooling of biological samples to reduce exposure misclassification in biomarker-based studies. Epidemiology. 2016;27(3):378–88 In this study, authors used simulations to assess how many samples are needed to limit attenuation bias in epidemiological studies. They also present three approaches to reduce attenuation bias in exposure-outcome associations.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P, et al. The human early-life exposome (HELIX): project rationale and design. Environ Health Perspect. 2014;122(6):535–44.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Pleil JD, Wallace MAG, Stiegel MA, Funk WE. Human biomarker interpretation: the importance of intra-class correlation coefficients (ICC) and their calculations based on mixed models, ANOVA, and variance estimates. J Toxicol Environ Health B Crit Rev. 2018;21(3):161–80.PubMedCrossRefGoogle Scholar
  60. 60.
    Morgan M, Jones P, Sobus J, Boyd Barr D. Predictors of urinary 3-Phenoxybenzoic acid levels in 50 North Carolina adults. Int J Environ Res Public Health. 2016;13(11).  https://doi.org/10.3390/ijerph13111172.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Judy S. LaKind
    • 1
    • 2
  • Fadwa Idri
    • 3
  • Daniel Q. Naiman
    • 4
  • Marc-André Verner
    • 3
    • 5
    Email author
  1. 1.LaKind Associates, LLCCatonsvilleUSA
  2. 2.Department of Epidemiology and Public HealthUniversity of Maryland School of MedicineBaltimoreUSA
  3. 3.Department of Occupational and Environmental Health, School of Public HealthUniversité de MontréalMontrealCanada
  4. 4.Department of Applied Mathematics and StatisticsThe Johns Hopkins UniversityBaltimoreUSA
  5. 5.Université de Montréal Public Health Research Institute (IRSPUM)Université de MontréalMontrealCanada

Personalised recommendations