Advertisement

Unexplored Opportunities: Use of Climate- and Weather-Driven Early Warning Systems to Reduce the Burden of Infectious Diseases

  • Cory W. Morin
  • Jan C. Semenza
  • Juli M. Trtanj
  • Gregory E. Glass
  • Christopher Boyer
  • Kristie L. Ebi
Global Environmental Health and Sustainability (W Al-Delaimy, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Global Environmental Health and Sustainability

Abstract

Purpose of Review

Weather and climate influence multiple aspects of infectious disease ecology. Creating and applying early warning systems based on temperature, precipitation, and other environmental data can identify where and when outbreaks of climate-sensitive infectious diseases could occur and can be used by decision makers to allocate resources. Whether an outbreak actually occurs depends heavily on other social, political, and institutional factors.

Recent Findings

Improving the timing and confidence of seasonal climate forecasting, coupled with knowledge of exposure-response relationships, can identify prior conditions conducive to disease outbreaks weeks to months in advance of outbreaks. This information could then be used by public health professionals to improve surveillance in the most likely areas for threats. Early warning systems are well established for drought and famine. And while weather- and climate-driven early warning systems for certain diseases, such as dengue fever and cholera, are employed in some regions, this area of research is underdeveloped.

Summary

Early warning systems based on temperature, precipitation, and other environmental data provide an opportunity for early detection leading to early action and response to potential pathogen threats, thereby reducing the burden of disease when compared with passive health indicator-based surveillance systems.

Keywords

Early warning systems Climate Infectious disease Forecasting 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Wu X, Lu Y, Zhou S, Chen L, Xu B. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ Int. 2016;86:14–23.CrossRefGoogle Scholar
  2. 2.
    Liang L, Gong P. Climate change and human infectious diseases: a synthesis of research findings from global and spatio-temporal perspectives. Environ Int. 2017;103:99–108.CrossRefGoogle Scholar
  3. 3.
    Servadio JL, Rosenthal SR, Carlson L, Bauer C. Climate patterns and mosquito-borne disease outbreaks in South and Southeast Asia. J Infect Public Health 2017:In Press.Google Scholar
  4. 4.
    Caminade C, Kovats S, Rocklöv J, Tompkins AM, Morse AP, Colon-Gonzalez FJ, et al. Impact of climate change on global malaria distribution. Proc Natl Acad Sci U S A. 2014;2014(111):3286–91.CrossRefGoogle Scholar
  5. 5.
    Hales S, de Wet N, Maindonald J, Woodward A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet. 2002;360:830–4.CrossRefGoogle Scholar
  6. 6.
    Semenza JC, Menne B. Climate change and infectious diseases in Europe. Lancet Infect Dis. 2009;9:365–75.CrossRefGoogle Scholar
  7. 7.
    Hii YL, Zhu H, Ng N, Ng LC, Rocklöv J. Forecast of dengue incidence using temperature and rainfall. PLoS Negl Trop Dis. 2012;6:e1908.CrossRefGoogle Scholar
  8. 8.
    Johansson MA, Reich NG, Hota A, Brownstein JS, Santillana M. Evaluating the performance of infectious disease forecasts: a comparison of climate-driven and seasonal dengue forecasts for Mexico. Sci Rep. 2016;6:33707.CrossRefGoogle Scholar
  9. 9.
    Semenza JC, Sudre B, Oni T, Suk JE, Giesecke J. Linking environmental drivers to infectious diseases: the European environment and epidemiology network. PLoS Negl Trop Dis. 2013;7:e2323.CrossRefGoogle Scholar
  10. 10.
    • Butterworth MK, Morin CW, Comrie AC. An analysis of the potential impact of climate change on dengue transmission in the southeastern United States. Environ Health Perspect. 2017;125:579–85 Demonstrates how shifts in climate conditions can impact the timing and longevity of vector and pathogen activity. CrossRefGoogle Scholar
  11. 11.
    Struchiner CJ, Rocklöv J, Wilder-Smith A, Massad E. Increasing dengue incidence in Singapore over the past 40 years: population growth, climate and mobility. PLoS One. 2015;10:e0136286.CrossRefGoogle Scholar
  12. 12.
    Ebi KL, Nealon J. Dengue in a changing climate. Environ Res. 2016;151:115–23.CrossRefGoogle Scholar
  13. 13.
    Semenza JC, Lindgren E, Balkanyi L, Espinosa L, Almqvist MS, Penttinen P, et al. Determinants and drivers of infectious disease threat events in Europe. Emerg Infect Dis. 2016;22:581–9.CrossRefGoogle Scholar
  14. 14.
    Patil RR, Kumar CS, Bagvandas M. Biodiversity loss: public health risk of disease spread and epidemics. Ann Trop Med Public Health. 2017;10:1432–8.CrossRefGoogle Scholar
  15. 15.
    Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451:990–3.CrossRefGoogle Scholar
  16. 16.
    Constantin de Magny G, Colwell RR. Cholera and climate: a demonstrated relationship. Trans Am Clin Climatol Assoc. 2009;120:119–28.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Morin CW, Comrie AC, Ernst K. Climate and dengue transmission: evidence and implications. Environ Health Perspect. 2013;121:1264–72.CrossRefGoogle Scholar
  18. 18.
    Engelthaler DM, Mosley DG, Cheek JE, Levy CE, Komatsu KK, Ettestad P, et al. Climatic and environmental patterns associated with hantavirus pulmonary syndrome, four corners region, United States. Emerg Infect Dis. 1999;5:87–94.CrossRefGoogle Scholar
  19. 19.
    Tamerius JD, Shaman J, Alonso WJ, Bloom-Feshbach K, Uejio CK, Comrie AC, et al. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoS Pathog. 2013;9:e1003194.CrossRefGoogle Scholar
  20. 20.
    Tamerius JD, Comrie AC. Coccidioidomycosis incidence in Arizona predicted by seasonal precipitation. PLoS One. 2011;6:e21009.CrossRefGoogle Scholar
  21. 21.
    Nakazawa T, Matsueda M. Relationship between meteorological variables/dust and the number of meningitis cases in Burkina Faso. Meteorol Appl. 2017;24:423–31.CrossRefGoogle Scholar
  22. 22.
    Semenza JC. Prototype early warning systems for vector-borne diseases in Europe. Int J Environ Res Public Health. 2015;12:6333–51.CrossRefGoogle Scholar
  23. 23.
    Lindgren E, Andersson Y, Suk JE, Sudre B, Semenza JC, Monitoring EU. Emerging infectious disease risk due to climate change. Science. 2012;336:418–9.CrossRefGoogle Scholar
  24. 24.
    Descloux E, Mangeas M, Eugène Menkes C, Lengaigne M, Leroy A, Tehei T, et al. Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl Trop Dis. 2012;6:e1470.CrossRefGoogle Scholar
  25. 25.
    Morin CW, Monaghan AJ, Hayden MH, Barrera R, Ernst K. Meteorologically driven simulations of dengue epidemics in San Juan. PR PLoS Negl Trop Dis. 2015;9:e0004002.CrossRefGoogle Scholar
  26. 26.
    Sheridan S. A survey of public health perception and response to heat warnings across four North American cities: an evaluation of municipal effectiveness. Int J Biometeorol. 2007;52:3–15.CrossRefGoogle Scholar
  27. 27.
    Anyamba A, Chretien J-P, Small J, Tucker CJ, Formenty PB, Richardson JH, et al. Prediction of a Rift Valley fever outbreak. Proc Natl Acad Sci U S A. 2009;106:955–9.CrossRefGoogle Scholar
  28. 28.
    Sudre B, Rossi M, van Bortel W, Danis K, Baka K, Vakalis N, et al. Mapping environmental suitability of malaria transmission in Greece. Emerg Infect Dis. 2013;19:784–6.CrossRefGoogle Scholar
  29. 29.
    Tseroni M, Baka A, Kapizioni C, Snounou G, Tsiodras S, Charvalakou M, et al. Prevention of malaria resurgence in Greece through the association of mass drug administration (MDA) to immigrants from malaria-endemic regions and standard control measures. PLoS Negl Trop Dis. 2015;9:e0004215.CrossRefGoogle Scholar
  30. 30.
    Daszak P, Zambrana-Torrelio C, Bogich TL, Fernandez M, Epstein JH, Murray KA, et al. Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence. Proc Natl Acad Sci U S A. 2013;110(Suppl 1):3681–8.CrossRefGoogle Scholar
  31. 31.
    Semenza JC, Rocklov J, Penttinen P, Lindgren E. Observed and projected drivers of emerging infectious diseases in Europe. Ann N Y Acad Sci. 2016;1382:73–83.CrossRefGoogle Scholar
  32. 32.
    Semenza JC, Sudre B, Miniota J, Rossi M, Hu W, Kossowsky D, et al. International dispersal of dengue through air travel: importation risk for Europe. PLoS Negl Trop Dis. 2014;8:e3278.CrossRefGoogle Scholar
  33. 33.
    Hjelle B, Glass GE. Outbreak of hantavirus infection in the Four Corners Region of the United States in the wake of the 1997-1998 El Nino-Southern oscillation. J Infect Dis. 2000(181):1569–73.CrossRefGoogle Scholar
  34. 34.
    Chowdhury G, Joshi S, Bhattacharya S, Sekar U, Birajdar B, Bhattacharyya A, et al. Extraintestinal infections caused by non-toxigenic vibrio cholerae non-o1/non-o139. Front Microbiol. 2016;7:144.CrossRefGoogle Scholar
  35. 35.
    Heng SP, Letchumanan V, Deng CY, Ab Mutalib NS, Khan TM, Chuah LH, et al. Vibrio vulnificus: an environmental and clinical burden. Front Microbiol. 2017;8:997.CrossRefGoogle Scholar
  36. 36.
    Letchumanan V, Chan KG, Lee LH. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol. 2014;5:705.CrossRefGoogle Scholar
  37. 37.
    Baker-Austin C, Trinanes J, Taylor N, Hartnell R, Siitonen A, Martinez-Urtaza J. Emerging vibrio risk at high latitudes in response to ocean warming. Nat Clim Chang. 2012;3:73–7.CrossRefGoogle Scholar
  38. 38.
    Banakar V, Constantin de Magny G, Jacobs J, Murtugudde R, Hug A, Wood RJ, et al. Temperal and spatial variability in the distribution of Vibrio vulnificus in the Chesapeake Bay: a hindcast study. Ecohealth. 2011;8:456–67.CrossRefGoogle Scholar
  39. 39.
    Baker-Austin C, Trinanes J, Gonzalez-Escalona N, Martinez-Urtaza J. Non-cholera Vibrios: the microbial barometer of climate change. Trends Microbiol. 2017;25:76–84.CrossRefGoogle Scholar
  40. 40.
    Trtanj J, Jantarasami L, Brunkard J, Collier T, Jacobs J, Lipp E, et al. Climate impacts on water-related illness. Chapter 6 in the impacts of climate change on human health in the United States: a scientific assessment. Washington, DC: US Global Change Research Program; 2016. p. 157–88.CrossRefGoogle Scholar
  41. 41.
    Andersson Y, Ekdahl K. Wound infections due to vibrio cholerae in Sweden after swimming in the Baltic Sea, summer 2006. Euro Surveill. 2006;11:E060803.060802.Google Scholar
  42. 42.
    Baker-Austin C, Trinanes JA, Salmenlinna S, Lofdahl M, Siitonen A, Nick GH, et al. Heat wave-associated vibriosis, Sweden and Finland, 2014. Emerg Infec Dis. 2016;22:1216–20.CrossRefGoogle Scholar
  43. 43.
    Dalsgaard A, Frimodt-Moller N, Bruun B, Hoi L, Larsen JL. Clinical manifestations and molecular epidemiology of vibrio vulnificus infections in Denmark. Eur J Clin Microbiol Infec Dis. 1996;15:227–32.CrossRefGoogle Scholar
  44. 44.
    Lukinmaa S, Mattila K, Lehtinen V, Hakkinen M, Koskela M, Siitonen A. Territorial waters of the Baltic Sea as a source of infections caused by vibrio cholerae non-o1, non-o139: report of 3 hospitalized cases. Diagn Microbiol Infec Dis. 2006;54:1–6.CrossRefGoogle Scholar
  45. 45.
    Ruppert J, Panzig B, Guertler L, Hinz P, Schwesinger G, Felix SB, et al. Two cases of severe sepsis due to vibrio vulnificus wound infection acquired in the Baltic Sea. Eur J Clin Microbiol Infec Dis. 2004;23:912–5.Google Scholar
  46. 46.
    Nichols GL, Andersson Y, Lindgren E, Devaux I, Semenza JC. European monitoring systems and data for assessing environmental and climate impacts on human infectious diseases. Int J Environ Res Public Health. 2014;11:3894–936.CrossRefGoogle Scholar
  47. 47.
    •• Semenza JC, Trinanes J, Lohr W, Sudre B, Löfdahl M, Martinez Urtaza J, et al. Environmental suitability of Vibrio infections in a warming climate: an early warning system. Environ Health Perspect. 2017;125:107004 Provides an example of an early warning system that was able detect high risk conditions of a pathogen in advance of case observations. CrossRefGoogle Scholar
  48. 48.
    Semenza JC, Tran A, Espinosa L, Sudre B, Domanovic D, Paz S. Climate change projections of West Nile virus infections in Europe: implications for blood safety practices. Environ Health. 2016;15:S28.CrossRefGoogle Scholar
  49. 49.
    Davis JK, Vincent G, Hildreth MB, Kightlinger L, Carlson C, Wimberly MC. Integrating environmental monitoring and mosquito surveillance to predict vector-borne disease: prospective forecasts of a West Nile virus outbreak. PLoS Curr Outbreaks. 2017;1.Google Scholar
  50. 50.
    Shaman J, Kandula S, Yang W, Karspeck A. The use of ambient humidity conditions to improve influenza forecast. PLoS Comput Biol. 2017;13:e1005844.CrossRefGoogle Scholar
  51. 51.
    Pasetto D, Finger F, Camacho A, Grandesso F, Cohuet S, Lemaitre JC, et al. Near real-time forecasting for cholera decision making in Haiti after Hurricane Matthew. PLoS Comput Biol. 2018;14:e1006127.CrossRefGoogle Scholar
  52. 52.
    Merkord CL, Liu Y, Mihretie A, Gebrehiwot T, Awoke W, Bayabil E, et al. Integrating malaria surveillance with climate data for outbreak detection and forecasting: the EPIDEMIA system. Malar J. 2017;16:89.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Cory W. Morin
    • 1
  • Jan C. Semenza
    • 2
  • Juli M. Trtanj
    • 3
  • Gregory E. Glass
    • 4
  • Christopher Boyer
    • 1
  • Kristie L. Ebi
    • 1
  1. 1.University of WashingtonSeattleUSA
  2. 2.European Centre for Disease Prevention and ControlSolnaSweden
  3. 3.National Oceanic and Atmospheric AdministrationSilver SpringUSA
  4. 4.University of FloridaGainesvilleUSA

Personalised recommendations