Current Environmental Health Reports

, Volume 5, Issue 4, pp 531–543 | Cite as

Adverse Maternal Metabolic Intrauterine Environment and Placental Epigenetics: Implications for Fetal Metabolic Programming

  • Corina Lesseur
  • Jia ChenEmail author
Environmental Epigenetics (A Baccarelli and A Cardenas, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Environmental Epigenetics


Purpose of Review

Herein, we summarize existent epidemiological studies relating adverse maternal metabolic environments of maternal obesity and gestational diabetes and placental DNA methylation.

Recent Findings

Multiple studies have evaluated associations between intrauterine exposure to gestational diabetes and/or maternal glucose levels and DNA methylation at candidate metabolic genes as well as in epigenome-wide studies. Some of the genomic regions more consistently associated include lipid-related genes (LPL and PPARGC1A), the major histocompatibility complex (MHC), and imprinted genes. Studies solely focused on maternal obesity influences on the placental epigenome are scarce.


Understanding the placental mechanisms involved in fetal metabolic programming could lead to discovery of placental biomarkers at birth that predict later-life metabolic risk. Moving forward is important to standardize methods utilized in epigenetics research; consistent methodology can help interpret disparate findings. Larger studies with longitudinal follow-up are needed to address future challenges in fetal programming research.


Epigenetics Placenta Maternal obesity Gestational diabetes Metabolic programming 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the author.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England). 2014;384(9945):766–81.CrossRefGoogle Scholar
  2. 2.
    Fisher SC, Kim SY, Sharma AJ, Rochat R, Morrow B. Is obesity still increasing among pregnant women? Prepregnancy obesity trends in 20 states, 2003–2009. Prev Med. 2013;56(6):372–8.CrossRefGoogle Scholar
  3. 3.
    • Poston L, Caleyachetty R, Cnattingius S, Corvalan C, Uauy R, Herring S, et al. Preconceptional and maternal obesity: epidemiology and health consequences. Lancet Diabetes Endocrinol. 2016;4(12):1025–36 Recent summary of the margnigtude of the maternal obesity problem and its possible consequences.CrossRefGoogle Scholar
  4. 4.
    Marchi J, Berg M, Dencker A, Olander EK, Begley C. Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev: Off J Int Assoc Stud Obes. 2015;16(8):621–38.CrossRefGoogle Scholar
  5. 5.
    Torloni MR, Betrán AP, Horta BL, Nakamura MU, Atallah AN, Moron AF, et al. Prepregnancy BMI and the risk of gestational diabetes: a systematic review of the literature with meta-analysis. Obes Rev. 2009;10(2):194–203.CrossRefGoogle Scholar
  6. 6.
    O’Brien TE, Ray JG, Chan WS. Maternal body mass index and the risk of preeclampsia: a systematic overview. Epidemiology. 2003;14(3):368–74.CrossRefGoogle Scholar
  7. 7.
    Aune D, Saugstad OD, Henriksen T, Tonstad S. Maternal body mass index and the risk of fetal death, stillbirth, and infant death: a systematic review and meta-analysis. Jama. 2014;311(15):1536–46.CrossRefGoogle Scholar
  8. 8.
    Declercq E, MacDorman M, Osterman M, Belanoff C, Iverson R. Prepregnancy Obesity and Primary Cesareans among Otherwise Low-Risk Mothers in 38 U.S. States in 2012. Birth (Berkeley, Calif). 2015;42(4):309–18.CrossRefGoogle Scholar
  9. 9.
    Kim SY, Sharma AJ, Sappenfield W, Wilson HG, Salihu HM. Association of maternal body mass index, excessive weight gain, and gestational diabetes mellitus with large-for-gestational-age births. Obstet Gynecol. 2014;123(4):737–44.CrossRefGoogle Scholar
  10. 10.
    Ouzounian JG, Hernandez GD, Korst LM, Montoro MM, Battista LR, Walden CL, et al. Pre-pregnancy weight and excess weight gain are risk factors for macrosomia in women with gestational diabetes. J Perinatol: Off J California Perinatal Assoc. 2011;31(11):717–21.CrossRefGoogle Scholar
  11. 11.
    Cnattingius S, Villamor E, Johansson S, Edstedt Bonamy AK, Persson M, Wikstrom AK, et al. Maternal obesity and risk of preterm delivery. Jama. 2013;309(22):2362–70.CrossRefGoogle Scholar
  12. 12.
    Stothard KJ, Tennant PW, Bell R, Rankin J. Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. Jama. 2009;301(6):636–50.CrossRefGoogle Scholar
  13. 13.
    Lawlor DA, Relton C, Sattar N, Nelson SM. Maternal adiposity--a determinant of perinatal and offspring outcomes? Nat Rev. Endocrinol. 2012;8(11):679–88.CrossRefGoogle Scholar
  14. 14.
    Poston L, Harthoorn LF, Van Der Beek EM. Obesity in pregnancy: implications for the mother and lifelong health of the child. A consensus statement. Pediatric Res. 2011;69(2):175–180.Google Scholar
  15. 15.
    Ma RCW, Popkin BM. Intergenerational diabetes and obesity-A cycle to break? PLoS Med. 2017;14(10):e1002415.CrossRefGoogle Scholar
  16. 16.
    Adamo KB, Ferraro ZM, Brett KE. Can we modify the intrauterine environment to halt the intergenerational cycle of obesity? Int J Environ Res public health. 2012;9(4):1263–307.CrossRefGoogle Scholar
  17. 17.
    Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7.CrossRefGoogle Scholar
  18. 18.
    Lumey LH, Ravelli AC, Wiessing LG, Koppe JG, Treffers PE, Stein ZA. The Dutch famine birth cohort study: design, validation of exposure, and selected characteristics of subjects after 43 years follow-up. Pediatr Perinat Epidemiol. 1993;7(4):354–67.CrossRefGoogle Scholar
  19. 19.
    Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet (London, England). 1998;351(9097):173–7.Google Scholar
  20. 20.
    Ravelli AC, van der Meulen JH, Osmond C, Barker DJ, Bleker OP. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr. 1999;70(5):811–816.Google Scholar
  21. 21.
    Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VW, Eriksson JG, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017;5(1):53–64.CrossRefGoogle Scholar
  22. 22.
    Fisher SJ. The placenta dilemma. Semin Reprod Med. 2000;18(3):321–6.CrossRefGoogle Scholar
  23. 23.
    Maltepe E, Fisher SJ. Placenta: the forgotten organ. Ann Rev cell Dev Biol. 2015;31:523–52.CrossRefGoogle Scholar
  24. 24.
    Nugent BM, Bale TL. The omniscient placenta: Metabolic and epigenetic regulation of fetal programming. Front Neuroendocrinol. 2015;39:28–37.CrossRefGoogle Scholar
  25. 25.
    Barker DJ, Thornburg KL. Placental programming of chronic diseases, cancer and lifespan: a review. Placenta. 2013;34(10):841–5.CrossRefGoogle Scholar
  26. 26.
    Myatt L. Placental adaptive responses and fetal programming. J Physiol. 2006;572(Pt 1):25–30.CrossRefGoogle Scholar
  27. 27.
    Tarrade A, Panchenko P, Junien C, Gabory A. Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J Exp Biol. 2015;218(Pt 1):50–8.CrossRefGoogle Scholar
  28. 28.
    Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:245–54.CrossRefGoogle Scholar
  29. 29.
    Dolinoy DC. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev. 2008;66(Suppl 1):S7–11.CrossRefGoogle Scholar
  30. 30.
    Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol. 2007;23(3):297–307.CrossRefGoogle Scholar
  31. 31.
    Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA. 2007;104(32):13056–61.CrossRefGoogle Scholar
  32. 32.
    Jiang X, Yan J, West AA, Perry CA, Malysheva OV, Devapatla S, et al. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J: Off Publ Fed Am Soc Exp Biol. 2012;26(8):3563–74.CrossRefGoogle Scholar
  33. 33.
    Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA. 2008;105(44):17046–9.CrossRefGoogle Scholar
  34. 34.
    Tobi EW, Heijmans BT, Kremer D, Putter H. Delemarre-van de Waal HA, Finken MJ, et al. DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. Epigenetics: Off J DNA Methylation Soc. 2011;6(2):171–6.CrossRefGoogle Scholar
  35. 35.
    Bouchard L, Thibault S, Guay SP, Santure M, Monpetit A, St-Pierre J, et al. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care. 2010;33(11):2436–41.CrossRefGoogle Scholar
  36. 36.
    El Hajj N, Pliushch G, Schneider E, Dittrich M, Müller T, Korenkov M, et al. Metabolic Programming of MEST DNA Methylation by Intrauterine Exposure to Gestational Diabetes Mellitus. Diabetes. 2013;62(4):1320–8.CrossRefGoogle Scholar
  37. 37.
    Lesseur C, Armstrong DA, Paquette AG, Li Z, Padbury JF, Marsit CJ. Maternal obesity and gestational diabetes are associated with placental leptin DNA methylation. Am J Obstet Gynecol. 2014;211(6):654.e1–9.Google Scholar
  38. 38.
    Bouchard L, Hivert MF, Guay SP, St-Pierre J, Perron P, Brisson D. Placental adiponectin gene DNA methylation levels are associated with mothers’ blood glucose concentration. Diabetes. 2012;61(5):1272–1280.Google Scholar
  39. 39.
    Houde AA, Guay SP, Desgagne V, Hivert MF, Baillargeon JP, St-Pierre J, et al. Adaptations of placental and cord blood ABCA1 DNA methylation profile to maternal metabolic status. Epigenetics. 2013;8(12):1289–302.CrossRefGoogle Scholar
  40. 40.
    Houde AA, St-Pierre J, Hivert MF, Baillargeon JP, Perron P, Gaudet D, et al. Placental lipoprotein lipase DNA methylation levels are associated with gestational diabetes mellitus and maternal and cord blood lipid profiles. J Dev Origins Health Dis. 2014;5(2):132–41.CrossRefGoogle Scholar
  41. 41.
    • Gagne-Ouellet V, Houde AA, Guay SP, Perron P, Gaudet D, Guerin R, et al. Placental lipoprotein lipase DNA methylation alterations are associated with gestational diabetes and body composition at 5 years of age. Epigenetics. 2017;12(8):616–25 Firt study that relate placental epigenetic marks to 5-year olf weight outomes. Google Scholar
  42. 42.
    Xie X, Gao H, Zeng W, Chen S, Feng L, Deng D, et al. Placental DNA methylation of peroxisome-proliferator-activated receptor-gamma co-activator-1alpha promoter is associated with maternal gestational glucose level. Clin Sci (London, England: 1979). 2015;129(4):385–94.Google Scholar
  43. 43.
    Cote S, Gagne-Ouellet V, Guay SP, Allard C, Houde AA, Perron P, et al. PPARGC1alpha gene DNA methylation variations in human placenta mediate the link between maternal hyperglycemia and leptin levels in newborns. Clin Epigenetics. 2016;8:72.CrossRefGoogle Scholar
  44. 44.
    Desgagne V, Hivert MF, St-Pierre J, Guay SP, Baillargeon JP, Perron P, et al. Epigenetic dysregulation of the IGF system in placenta of newborns exposed to maternal impaired glucose tolerance. Epigenomics. 2014;6(2):193–207.CrossRefGoogle Scholar
  45. 45.
    Lesseur C, Armstrong DA, Paquette AG, Koestler DC, Padbury JF, Marsit CJ. Tissue-specific Leptin promoter DNA methylation is associated with maternal and infant perinatal factors. Mol Cell Endocrinol. 2013;381(1–2):160–7.CrossRefGoogle Scholar
  46. 46.
    Jolly MC, Sebire NJ, Harris JP, Regan L, Robinson S. Risk factors for macrosomia and its clinical consequences: a study of 350,311 pregnancies. Eur J Obstet Gynecol Reprod Biol. 2003;111(1):9–14.Google Scholar
  47. 47.
    Zhao P, Liu E, Qiao Y, Katzmarzyk PT, Chaput JP, Fogelholm M, et al. Maternal gestational diabetes and childhood obesity at age 9–11: results of a multinational study. Diabetologia. 2016;59(11):2339–48.CrossRefGoogle Scholar
  48. 48.
    Lavery JA, Friedman AM, Keyes KM, Wright JD, Ananth CV. Gestational diabetes in the United States: temporal changes in prevalence rates between 1979 and 2010. BJOG: an international journal of obstetrics and gynecology. 2017;124(5):804–813.Google Scholar
  49. 49.
    Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosc. 2004;7(8):847–854.Google Scholar
  50. 50.
    Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3(2):97–106.CrossRefGoogle Scholar
  51. 51.
    Filiberto AC, Maccani MA, Koestler D, Wilhelm-Benartzi C, Avissar-Whiting M, Banister CE, et al. Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta. Epigenetics. 2011;6(5):566–72.CrossRefGoogle Scholar
  52. 52.
    Frost JM, Moore GE. The importance of imprinting in the human placenta. PLoS Genet. 2010;6(7):e1001015.CrossRefGoogle Scholar
  53. 53.
    Su R, Wang C, Feng H, Lin L, Liu X, Wei Y, et al. Alteration in Expression and Methylation of IGF2/H19 in Placenta and Umbilical Cord Blood Are Associated with Macrosomia Exposed to Intrauterine Hyperglycemia. PloS one. 2016;11(2):e0148399.CrossRefGoogle Scholar
  54. 54.
    Reichetzeder C, Dwi Putra SE, Pfab T, Slowinski T, Neuber C, Kleuser B, et al. Increased global placental DNA methylation levels are associated with gestational diabetes. Clin epigenetics. 2016;8:82.CrossRefGoogle Scholar
  55. 55.
    Nomura Y, Lambertini L, Rialdi A, Lee M, Mystal EY, Grabie M, et al. Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod Sci (Thousand Oaks, Calif). 2014;21(1):131–7.Google Scholar
  56. 56.
    Ruchat SM, Houde AA, Voisin G, St-Pierre J, Perron P, Baillargeon JP, et al. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics. 2013;8(9):935–43.CrossRefGoogle Scholar
  57. 57.
    Finer S, Mathews C, Lowe R, Smart M, Hillman S, Foo L, et al. Maternal gestational diabetes is associated with genome-wide DNA methylation variation in placenta and cord blood of exposed offspring. Hum Mol Genet. 2015;24(11):3021–9.CrossRefGoogle Scholar
  58. 58.
    Rong C, Cui X, Chen J, Qian Y, Jia R, Hu Y. DNA methylation profiles in placenta and its association with gestational diabetes mellitus. Exp Clin Endocrinol Diabetes: Off J, German Soc Endocrinol[and] German Diabetes Assoc. 2015;123(5):282–8.CrossRefGoogle Scholar
  59. 59.
    Binder AM, LaRocca J, Lesseur C, Marsit CJ, Michels KB. Epigenome-wide and transcriptome-wide analyses reveal gestational diabetes is associated with alterations in the human leukocyte antigen complex. Clin Epigenet. 2015;7:79.CrossRefGoogle Scholar
  60. 60.
    Cardenas A, Gagne-Ouellet V, Allard C, Brisson D, Perron P, Bouchard L, et al. Placenta DNA Methylation Adaptation to Maternal Glycemic Response in Pregnancy. Diabetes. 2018.Google Scholar
  61. 61.
    Mitsuya K, Parker AN, Liu L, Ruan J, Vissers MCM, Myatt L. Alterations in the placental methylome with maternal obesity and evidence for metabolic regulation. PloS one. 2017;12(10):e0186115.CrossRefGoogle Scholar
  62. 62.
    Houde AA, Ruchat SM, Allard C, Baillargeon JP, St-Pierre J, Perron P, et al. LRP1B, BRD2 and CACNA1D: new candidate genes in fetal metabolic programming of newborns exposed to maternal hyperglycemia. Epigenomics. 2015;7(7):1111–22.CrossRefGoogle Scholar
  63. 63.
    Cooper JD, Smyth DJ, Smiles AM, Plagnol V, Walker NM, Allen JE, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet. 2008;40(12):1399–401.CrossRefGoogle Scholar
  64. 64.
    Kwak SH, Kim SH, Cho YM, Go MJ, Cho YS, Choi SH, et al. A genome-wide association study of gestational diabetes mellitus in Korean women. Diabetes. 2012;61(2):531–41.CrossRefGoogle Scholar
  65. 65.
    Li YR, Li J, Zhao SD, Bradfield JP, Mentch FD, Maggadottir SM, et al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat Med. 2015;21(9):1018–27.CrossRefGoogle Scholar
  66. 66.
    Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol. 2018.Google Scholar
  67. 67.
    •• Felix JF, Joubert BR, Baccarelli AA, Sharp GC, Almqvist C, Annesi-Maesano I, et al. Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. Int J Epidemiol. 2018;47(1):22–3u Recent outline of current epigenetics research on children’s health including best practices for epigenome-wide studies. Google Scholar
  68. 68.
    • Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, et al. Small-Magnitude Effect Sizes in Epigenetic End Points are Important in Children’s Environmental Health Studies: The Children’s Environmental Health and Disease Prevention Research Center’s Epigenetics Working Group. Environ Health Perspect. 2017;125(4):511–26 Largest GDM-related EWAS to date using placental tissue. Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of PediatricsIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkUSA
  4. 4.Department of Medicine, Hematology, and Medical OncologyIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations