Advertisement

Current Environmental Health Reports

, Volume 5, Issue 4, pp 499–511 | Cite as

Pharmacologic and Environmental Endocrine Disruptors in the Pathogenesis of Hypospadias: a Review

  • Rajiv Raghavan
  • Megan E. Romano
  • Margaret R. Karagas
  • Frank J. PennaEmail author
Early Life Environmental Health (J Sunyer and P Dadvand, Section Editors)
  • 60 Downloads
Part of the following topical collections:
  1. Topical Collection on Early Life Environmental Health

Abstract

Purpose of Review

Endocrine disrupting chemicals (EDCs) potentially have a role in causing hypospadias malformation through modifiable in-utero exposure. Considering the emerging literature on the role of potential endocrine disrupting substances on the occurrence of hypospadias and the potential to inform public health efforts to prevent the occurrence of these malformations, we have summarized the current literature, identified areas of consensus, and highlighted areas that warrant further investigation.

Recent Findings

Pharmaceuticals, such as diethylstilbestrol, progestin fertility treatments, corticosteroids, and valproic acid, have all been associated with hypospadias risk. Data on exposure to dichlorodiphenyltrichloroethane and hexachlorobenzene pesticides, as well as non-persistent pollutants, particularly phthalates, is less consistent but still compelling.

Summary

Improving exposure assessment, standardizing sample timing to relevant developmental windows, using clear case identification and classification schemes, and elucidating dose-response relationships with EDCs will help to provide clearer evidence. Promising directions for future research include identification of subgroups with genetic hypospadias risk factors, measurement of intermediate outcomes, and study of EDC mixtures that will more accurately represent the total fetal environment.

Keywords

Hypospadias Endocrine disrupting chemicals Pharmaceuticals Phthalates Pesticides In-utero 

Notes

Acknowledgements

We wish to thank Dr. Lucas Salas for expert assistance in interpreting Spanish language literature relevant to this review and Leah Hofgesang for her professional illustrative contributions to Fig. 2.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Springer A, van den Heijkant M, Baumann S. Worldwide prevalence of hypospadias. J Pediatr Urol. 2016;12(3):152 e1–7.  https://doi.org/10.1016/j.jpurol.2015.12.002.CrossRefGoogle Scholar
  2. 2.
    Sagodi L, Kiss A, Kiss-Toth E, Barkai L. Prevalence and possible causes of hypospadias. Orv Hetil. 2014;155(25):978–85.  https://doi.org/10.1556/OH.2014.29858.CrossRefPubMedGoogle Scholar
  3. 3.
    Baskin LS. Hypospadias and urethral development. J Urol. 2000;163(3):951–6.CrossRefGoogle Scholar
  4. 4.
    Aschim EL, Nordenskjold A, Giwercman A, Lundin KB, Ruhayel Y, Haugen TB, et al. Linkage between cryptorchidism, hypospadias, and GGN repeat length in the androgen receptor gene. J Clin Endocrinol Metab. 2004;89(10):5105–9.  https://doi.org/10.1210/jc.2004-0293.CrossRefPubMedGoogle Scholar
  5. 5.
    Ratan SK, Aggarwal S, Mishra TK, Saxena A, Yadav S, Pandey R, et al. Children with isolated hypospadias have different hormonal profile compared to those with associated anomalies. J Pediatr Endocrinol Metab. 2012;25(1–2):111–9. doi: https://doi.org/10.1515/jpem.2011.421.
  6. 6.
    Thorup J, McLachlan R, Cortes D, Nation TR, Balic A, Southwell BR, et al. What is new in cryptorchidism and hypospadias—a critical review on the testicular dysgenesis hypothesis. J Pediatr Surg. 2010;45(10):2074–86.  https://doi.org/10.1016/j.jpedsurg.2010.07.030.CrossRefPubMedGoogle Scholar
  7. 7.
    Akre O, Pettersson A, Richiardi L. Risk of contralateral testicular cancer among men with unilaterally undescended testis: a meta analysis. Int J Cancer. 2009;124(3):687–9.  https://doi.org/10.1002/ijc.23936.CrossRefPubMedGoogle Scholar
  8. 8.
    Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect. 2005;113(8):1056–61.CrossRefGoogle Scholar
  9. 9.
    Boberg J, Christiansen S, Axelstad M, Kledal TS, Vinggaard AM, Dalgaard M, et al. Reproductive and behavioral effects of diisononyl phthalate (DINP) in perinatally exposed rats. Reprod Toxicol. 2011;31(2):200–9.  https://doi.org/10.1016/j.reprotox.2010.11.001.CrossRefPubMedGoogle Scholar
  10. 10.
    Li N, Chen X, Zhou X, Zhang W, Yuan J, Feng J. The mechanism underlying dibutyl phthalate induced shortened anogenital distance and hypospadias in rats. J Pediatr Surg. 2015;50(12):2078–83.  https://doi.org/10.1016/j.jpedsurg.2015.08.046.CrossRefPubMedGoogle Scholar
  11. 11.
    Jeng HA. Exposure to endocrine disrupting chemicals and male reproductive health. Front Public Health. 2014;2:55.  https://doi.org/10.3389/fpubh.2014.00055.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Anderka M, Mitchell AA, Louik C, Werler MM, Hernandez-Diaz S, Rasmussen SA, et al. Medications used to treat nausea and vomiting of pregnancy and the risk of selected birth defects. Birth Defects Res A Clin Mol Teratol. 2012;94(1):22–30.  https://doi.org/10.1002/bdra.22865.CrossRefPubMedGoogle Scholar
  13. 13.
    Carmichael SL, Ma C, Werler MM, Olney RS, Shaw GM, National Birth Defects Prevention S. Maternal corticosteroid use and hypospadias. J Pediatr. 2009;155(1):39–44, e1.  https://doi.org/10.1016/j.jpeds.2009.01.039.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lind JN, Tinker SC, Broussard CS, Reefhuis J, Carmichael SL, Honein MA, et al. Maternal medication and herbal use and risk for hypospadias: data from the National Birth Defects Prevention Study, 1997–2007. Pharmacoepidemiol Drug Saf. 2013;22(7):783–93.  https://doi.org/10.1002/pds.3448.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pedersen L, Norgaard M, Skriver MV, Olsen J, Sorensen HT. Prenatal exposure to loratadine in children with hypospadias: a nested case-control study within the Danish National Birth Cohort. Am J Ther. 2006;13(4):320–4.CrossRefGoogle Scholar
  16. 16.
    Reis M, Kallen B. Delivery outcome after maternal use of antidepressant drugs in pregnancy: an update using Swedish data. Psychol Med. 2010;40(10):1723–33.  https://doi.org/10.1017/S0033291709992194.CrossRefPubMedGoogle Scholar
  17. 17.
    Rodriguez-Pinilla E, Mejias C, Prieto-Merino D, Fernandez P, Martinez-Frias ML, Group EW. Risk of hypospadias in newborn infants exposed to valproic acid during the first trimester of pregnancy: a case-control study in Spain. Drug Saf. 2008;31(6):537–43.CrossRefGoogle Scholar
  18. 18.
    Brouwers MM, Feitz WF, Roelofs LA, Kiemeney LA, de Gier RP, Roeleveld N. Hypospadias: a transgenerational effect of diethylstilbestrol? Hum Reprod. 2006;21(3):666–9.  https://doi.org/10.1093/humrep/dei398.CrossRefPubMedGoogle Scholar
  19. 19.
    Carmichael SL, Shaw GM, Laurent C, Croughan MS, Olney RS, Lammer EJ. Maternal progestin intake and risk of hypospadias. Arch Pediatr Adolesc Med. 2005;159(10):957–62.  https://doi.org/10.1001/archpedi.159.10.957.CrossRefPubMedGoogle Scholar
  20. 20.
    Meijer WM, de Jong-Van den Berg LT, van den Berg MD, Verheij JB, de Walle HE. Clomiphene and hypospadias on a detailed level: signal or chance? Birth Defects Res A Clin Mol Teratol. 2006;76(4):249–52.  https://doi.org/10.1002/bdra.20243.CrossRefPubMedGoogle Scholar
  21. 21.
    Norgaard M, Wogelius P, Pedersen L, Rothman KJ, Sorensen HT. Maternal use of oral contraceptives during early pregnancy and risk of hypospadias in male offspring. Urology. 2009;74(3):583–7.  https://doi.org/10.1016/j.urology.2009.04.034.CrossRefPubMedGoogle Scholar
  22. 22.
    Sorensen HT, Pedersen L, Skriver MV, Norgaard M, Norgard B, Hatch EE. Use of clomifene during early pregnancy and risk of hypospadias: population based case-control study. BMJ. 2005;330(7483):126–7.  https://doi.org/10.1136/bmj.38326.606979.79.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    van Rooij IA, van der Zanden LF, Brouwers MM, Knoers NV, Feitz WF, Roeleveld N. Risk factors for different phenotypes of hypospadias: results from a Dutch case-control study. BJU Int. 2013;112(1):121–8.  https://doi.org/10.1111/j.1464-410X.2012.11745.x.CrossRefPubMedGoogle Scholar
  24. 24.
    Wogelius P, Horvath-Puho E, Pedersen L, Norgaard M, Czeizel AE, Sorensen HT. Maternal use of oral contraceptives and risk of hypospadias - a population-based case-control study. Eur J Epidemiol. 2006;21(10):777–81.  https://doi.org/10.1007/s10654-006-9067-0.CrossRefPubMedGoogle Scholar
  25. 25.
    Chevrier C, Petit C, Philippat C, Mortamais M, Slama R, Rouget F, et al. Maternal urinary phthalates and phenols and male genital anomalies. Epidemiology. 2012;23(2):353–6.  https://doi.org/10.1097/EDE.0b013e318246073e.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    • Jensen MS, Anand-Ivell R, Norgaard-Pedersen B, Jonsson BA, Bonde JP, Hougaard DM, et al. Amniotic fluid phthalate levels and male fetal gonad function. Epidemiology. 2015;26(1):91–9.  https://doi.org/10.1097/EDE.0000000000000198. One of the few studies that examines EDC levels in the direct fetal environment. CrossRefPubMedGoogle Scholar
  27. 27.
    Carmichael SL, Herring AH, Sjodin A, Jones R, Needham L, Ma C, et al. Hypospadias and halogenated organic pollutant levels in maternal mid-pregnancy serum samples. Chemosphere. 2010;80(6):641–6.  https://doi.org/10.1016/j.chemosphere.2010.04.055.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Giordano F, Abballe A, De Felip E, di Domenico A, Ferro F, Grammatico P, et al. Maternal exposures to endocrine disrupting chemicals and hypospadias in offspring. Birth Defects Res A Clin Mol Teratol. 2010;88(4):241–50.  https://doi.org/10.1002/bdra.20657.CrossRefPubMedGoogle Scholar
  29. 29.
    McGlynn KA, Guo X, Graubard BI, Brock JW, Klebanoff MA, Longnecker MP. Maternal pregnancy levels of polychlorinated biphenyls and risk of hypospadias and cryptorchidism in male offspring. Environ Health Perspect. 2009;117(9):1472–6.  https://doi.org/10.1289/ehp.0800389.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rignell-Hydbom A, Lindh CH, Dillner J, Jonsson BA, Rylander L. A nested case-control study of intrauterine exposure to persistent organochlorine pollutants and the risk of hypospadias. PLoS One. 2012;7(9):e44767.  https://doi.org/10.1371/journal.pone.0044767.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Toft G, Jonsson BA, Bonde JP, Norgaard-Pedersen B, Hougaard DM, Cohen A, et al. Perfluorooctane sulfonate concentrations in amniotic fluid, biomarkers of fetal leydig cell function, and cryptorchidism and hypospadias in Danish boys (1980–1996). Environ Health Perspect. 2016;124(1):151–6.  https://doi.org/10.1289/ehp.1409288.CrossRefPubMedGoogle Scholar
  32. 32.
    Agopian AJ, Lupo PJ, Canfield MA, Langlois PH. Case-control study of maternal residential atrazine exposure and male genital malformations. Am J Med Genet A. 2013;161A(5):977–82.  https://doi.org/10.1002/ajmg.a.35815.CrossRefPubMedGoogle Scholar
  33. 33.
    Bhatia R, Shiau R, Petreas M, Weintraub JM, Farhang L, Eskenazi B. Organochlorine pesticides and male genital anomalies in the child health and development studies. Environ Health Perspect. 2005;113(2):220–4.CrossRefGoogle Scholar
  34. 34.
    Dugas J, Nieuwenhuijsen MJ, Martinez D, Iszatt N, Nelson P, Elliott P. Use of biocides and insect repellents and risk of hypospadias. Occup Environ Med. 2010;67(3):196–200.  https://doi.org/10.1136/oem.2009.047373.CrossRefPubMedGoogle Scholar
  35. 35.
    Flores-Luevano S, Farias P, Hernandez M, Romano-Riquer P, Weber JP, Dewailly E, et al. DDT/DDE concentrations and risk of hypospadias. Pilot case-control study. Salud Publica Mex. 2003;45(6):431–8.CrossRefGoogle Scholar
  36. 36.
    Longnecker MP, Klebanoff MA, Brock JW, Zhou H, Gray KA, Needham LL, et al. Maternal serum level of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene and risk of cryptorchidism, hypospadias, and polythelia among male offspring. Am J Epidemiol. 2002;155(4):313–22.CrossRefGoogle Scholar
  37. 37.
    Trabert B, Longnecker MP, Brock JW, Klebanoff MA, McGlynn KA. Maternal pregnancy levels of trans-nonachlor and oxychlordane and prevalence of cryptorchidism and hypospadias in boys. Environ Health Perspect. 2012;120(3):478–82.  https://doi.org/10.1289/ehp.1103936.CrossRefPubMedGoogle Scholar
  38. 38.
    Winston JJ, Emch M, Meyer RE, Langlois P, Weyer P, Mosley B, et al. Hypospadias and maternal exposure to atrazine via drinking water in the National Birth Defects Prevention Study. Environ Health. 2016;15(1):76.  https://doi.org/10.1186/s12940-016-0161-9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bamigboye AA, Morris J. Oestrogen supplementation, mainly diethylstilbestrol, for preventing miscarriages and other adverse pregnancy outcomes. Cochrane Database Syst Rev. 2003;3:CD004353.  https://doi.org/10.1002/14651858.CD004353.CrossRefGoogle Scholar
  40. 40.
    •• Klip H, Verloop J, van Gool JD, Koster ME, Burger CW, van Leeuwen FE, et al. Hypospadias in sons of women exposed to diethylstilbestrol in utero: a cohort study. Lancet. 2002;359(9312):1102–7.  https://doi.org/10.1016/S0140-6736(02)08152-7. This study is important as it is the landmark study that launched interest in EDC exposure and its effect on hypospadias. CrossRefPubMedGoogle Scholar
  41. 41.
    Palmer JR, Wise LA, Robboy SJ, Titus-Ernstoff L, Noller KL, Herbst AL, et al. Hypospadias in sons of women exposed to diethylstilbestrol in utero. Epidemiology. 2005;16(4):583–6.CrossRefGoogle Scholar
  42. 42.
    Kalfa N, Paris F, Soyer-Gobillard MO, Daures JP, Sultan C. Prevalence of hypospadias in grandsons of women exposed to diethylstilbestrol during pregnancy: a multigenerational national cohort study. Fertil Steril. 2011;95(8):2574–7.  https://doi.org/10.1016/j.fertnstert.2011.02.047.CrossRefPubMedGoogle Scholar
  43. 43.
    Subramaniam R, Spinoit AF, Hoebeke P. Hypospadias repair: an overview of the actual techniques. Semin Plast Surg. 2011;25(3):206–12.  https://doi.org/10.1055/s-0031-1281490.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Spinoit AF, Poelaert F, Van Praet C, Groen LA, Van Laecke E, Hoebeke P. Grade of hypospadias is the only factor predicting for re-intervention after primary hypospadias repair: a multivariate analysis from a cohort of 474 patients. J Pediatr Urol. 2015;11(2):70 e1–6.  https://doi.org/10.1016/j.jpurol.2014.11.014.CrossRefGoogle Scholar
  45. 45.
    Given JE, Loane M, Luteijn JM, Morris JK, de Jong van den Berg LT, Garne E, et al. EUROmediCAT signal detection: an evaluation of selected congenital anomaly-medication associations. Br J Clin Pharmacol. 2016;82(4):1094–109.  https://doi.org/10.1111/bcp.12947.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Erichsen R, Mikkelsen E, Pedersen L, Sorensen HT. Maternal use of proton pump inhibitors during early pregnancy and the prevalence of hypospadias in male offspring. Am J Ther. 2014;21(4):254–9.  https://doi.org/10.1097/MJT.0b013e3182456a8f.CrossRefPubMedGoogle Scholar
  47. 47.
    Kyriacou DN, Lewis RJ. Confounding by indication in clinical research. JAMA. 2016;316(17):1818–9.  https://doi.org/10.1001/jama.2016.16435.CrossRefPubMedGoogle Scholar
  48. 48.
    Gregoraszczuk EL, Ptak A. Endocrine-disrupting chemicals: some actions of pops on female reproduction. Int J Endocrinol. 2013;2013:828532.  https://doi.org/10.1155/2013/828532.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rocheleau CM, Romitti PA, Dennis LK. Pesticides and hypospadias: a meta-analysis. J Pediatr Urol. 2009;5(1):17–24.  https://doi.org/10.1016/j.jpurol.2008.08.006.CrossRefPubMedGoogle Scholar
  50. 50.
    Rossberg M, Wilhelm L, Pfleiderer G, Tögel A, Dreher E-L, Langer E, et al. Ullmann’s encyclopedia of industrial chemistry—chlorinated hydrocarbons. 2006. doi: https://doi.org/10.1002/14356007.a06_233.pub2.
  51. 51.
    Iszatt N, Nieuwenhuijsen MJ, Nelson P, Elliott P, Toledano MB. Water consumption and use, trihalomethane exposure, and the risk of hypospadias. Pediatrics. 2011;127(2):e389–97.  https://doi.org/10.1542/peds.2009-3356.CrossRefPubMedGoogle Scholar
  52. 52.
    Luben TJ, Nuckols JR, Mosley BS, Hobbs C, Reif JS. Maternal exposure to water disinfection by-products during gestation and risk of hypospadias. Occup Environ Med. 2008;65(6):420–9.  https://doi.org/10.1136/oem.2007.034256.CrossRefPubMedGoogle Scholar
  53. 53.
    Braun JM, Just AC, Williams PL, Smith KW, Calafat AM, Hauser R. Personal care product use and urinary phthalate metabolite and paraben concentrations during pregnancy among women from a fertility clinic. J Expo Sci Environ Epidemiol. 2014;24(e 5):459–66.  https://doi.org/10.1038/jes.2013.69.CrossRefPubMedGoogle Scholar
  54. 54.
    Silva MJ, Samandar E, Preau JL Jr, Reidy JA, Needham LL, Calafat AM. Quantification of 22 phthalate metabolites in human urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;860(1):106–12.  https://doi.org/10.1016/j.jchromb.2007.10.023.CrossRefPubMedGoogle Scholar
  55. 55.
    Watkins DJ, Eliot M, Sathyanarayana S, Calafat AM, Yolton K, Lanphear BP, et al. Variability and predictors of urinary concentrations of phthalate metabolites during early childhood. Environ Sci Technol. 2014;48(15):8881–90.  https://doi.org/10.1021/es501744v.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Braun JM, Kalkbrenner AE, Calafat AM, Bernert JT, Ye X, Silva MJ, et al. Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environ Health Perspect. 2011;119(1):131–7.  https://doi.org/10.1289/ehp.1002366.CrossRefPubMedGoogle Scholar
  57. 57.
    Choi H, Kim J, Im Y, Lee S, Kim Y. The association between some endocrine disruptors and hypospadias in biological samples. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2012;47(13):2173–9.  https://doi.org/10.1080/10934529.2012.680387.CrossRefPubMedGoogle Scholar
  58. 58.
    Calafat AM, Koch HM, Swan SH, Hauser R, Goldman LR, Lanphear BP, et al. Misuse of blood serum to assess exposure to bisphenol A and phthalates. Breast Cancer Res. 2013;15(5):403.  https://doi.org/10.1186/bcr3494.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    • Johns LE, Cooper GS, Galizia A, Meeker JD. Exposure assessment issues in epidemiology studies of phthalates. Environ Int. 2015;85:27–39.  https://doi.org/10.1016/j.envint.2015.08.005. This study speaks the exposure assessment issues that are widespread in the literature on this topic. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Li LX, Chen L, Meng XZ, Chen BH, Chen SQ, Zhao Y, et al. Exposure levels of environmental endocrine disruptors in mother-newborn pairs in China and their placental transfer characteristics. PloS One. 2013;8(5):e62526.  https://doi.org/10.1371/journal.pone.0062526.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Thier R, Bruning T, Roos PH, Rihs HP, Golka K, Ko Y, et al. Markers of genetic susceptibility in human environmental hygiene and toxicology: the role of selected CYP, NAT and GST genes. Int J Hyg Environ Health. 2003;206(3):149–71.  https://doi.org/10.1078/1438-4639-00209.CrossRefPubMedGoogle Scholar
  62. 62.
    Calafat AM, Wong L-Y, Ye X, Reidy JA, Needham LL. Concentrations of the sunscreen agent benzophenone-3 in residents of the United States: National Health and Nutrition Examination Survey 2003–2004. Environ Health Perspect. 2008;116(7):893–7.  https://doi.org/10.1289/ehp.11269.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Duty SM, Ackerman RM, Calafat AM, Hauser R. Personal care product use predicts urinary concentrations of some phthalate monoesters. Environ Health Perspect. 2005;113(11):1530–5.CrossRefGoogle Scholar
  64. 64.
    Guo Y, Kannan K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environ Sci Technol. 2013;47(24):14442–9.  https://doi.org/10.1021/es4042034.CrossRefPubMedGoogle Scholar
  65. 65.
    Calafat AM. Contemporary issues in exposure assessment using biomonitoring. Curr Epidemiol Rep. 2016;3(2):145–53.  https://doi.org/10.1007/s40471-016-0075-7.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Weisskopf MG, Tchetgen Tchetgen EJ, Raz R. Commentary: on the use of imperfect negative control exposures in epidemiologic studies. Epidemiology. 2016;27(3):365–7.  https://doi.org/10.1097/EDE.0000000000000454.CrossRefPubMedGoogle Scholar
  67. 67.
    Taylor KW, Joubert BR, Braun JM, Dilworth C, Gennings C, Hauser R, et al. Statistical approaches for assessing health effects of environmental chemical mixtures in epidemiology: lessons from an innovative workshop. Environ Health Perspect. 2016;124(12):A227–A9.  https://doi.org/10.1289/EHP547.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Braun JM, Gennings C, Hauser R, Webster TF. What can epidemiological studies tell us about the impact of chemical mixtures on human health? Environ Health Perspect. 2016;124(1):A6–9.  https://doi.org/10.1289/ehp.1510569.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Manzoni GA, Reali L. Management of hypospadias. J Pediatr Surg Subspecialties. 2017;11(1).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rajiv Raghavan
    • 1
  • Megan E. Romano
    • 2
  • Margaret R. Karagas
    • 2
  • Frank J. Penna
    • 1
    Email author
  1. 1.Division of Pediatric Urology, Children’s Hospital at DartmouthDartmouth|Geisel School of MedicineLebanonUSA
  2. 2.Department of EpidemiologyDartmouth|Geisel School of MedicineLebanonUSA

Personalised recommendations