Advertisement

Current Environmental Health Reports

, Volume 5, Issue 4, pp 464–485 | Cite as

Environmental Selenium and Human Health: an Update

  • Marco VincetiEmail author
  • Tommaso Filippini
  • Lauren A. Wise
Metals and Health (A Barchowsky, Section Editor)
  • 195 Downloads
Part of the following topical collections:
  1. Topical Collection on Metals and Health

Abstract

Purpose of Review

Selenium, a trace element, is ubiquitous in the environment. The main source of human exposure is diet. Despite its nutritional benefits, it is one of the most toxic naturally occurring elements. Selenium deficiency and overexposure have been associated with adverse health effects. Its level of toxicity may depend on its chemical form, as inorganic and organic species have distinct biological properties.

Recent Findings

Nonexperimental and experimental studies have generated insufficient evidence for a role of selenium deficiency in human disease, with the exception of Keshan disease, a cardiomyopathy. Conversely, recent randomized trials have indicated that selenium overexposure is positively associated with type 2 diabetes and high-grade prostate cancer. In addition, a natural experiment has suggested an association between overexposure to inorganic hexavalent selenium and two neurodegenerative diseases, amyotrophic lateral sclerosis and Parkinson’s disease.

Summary

Risk assessments should be revised to incorporate the results of studies demonstrating toxic effects of selenium. Additional observational studies and secondary analyses of completed randomized trials are needed to address the uncertainties regarding the health risks of selenium exposure.

Keywords

Selenium Environment Epidemiology Health risk assessment Cancer Diabetes Neurological disease 

Notes

Compliance with Ethical Standards

Conflict of Interest

Lauren A. Wise reports grants from National Institutes of Health (NICHD and NIEHS), while the study was conducted. Marco Vinceti and Tommaso Filippini declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

40572_2018_213_Fig4_ESM.png (1.8 mb)
Supplemental Figure S1

Geographic locations of nonexperimental studies on the health effects of environmental selenium in the human. (PNG 1796 kb)

40572_2018_213_MOESM1_ESM.tif (2.2 mb)
High resolution image (TIF 2235 kb)
40572_2018_213_Fig5_ESM.png (1.8 mb)
Supplemental Figure S2

Geographic location of experimental studies on the potential cancer-preventing properties of selenium in humans. (PNG 1874 kb)

40572_2018_213_MOESM2_ESM.tif (2.2 mb)
High resolution image (TIF 2253 kb)

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Brigelius-Flohe R, Flohe L. Selenium and redox signaling. Arch Biochem Biophys. 2017;617:48–59.PubMedGoogle Scholar
  2. 2.
    Hatfield D, Carlson BA, Tsuji P, Tobe R, Gladyshev VN. Selenium and cancer. In: Collins JF, editor. Molecular, genetic, and nutritional aspects of major and trace minerals. Elsevier: Academic Press; 2016.Google Scholar
  3. 3.
    • Jablonska E, Vinceti M. Selenium and human health: witnessing a Copernican revolution? J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33:328–68 This paper summarizes the most recent advancements in epidemiologic and biochemical research on selenium and their comprehensive relation.PubMedGoogle Scholar
  4. 4.
    • Oliveira CS, Piccoli BC, Aschner M, Rocha JBT. Chemical speciation of selenium and mercury as determinant of their neurotoxicity. Adv Neurobiol. 2017;18:53–83 This paper provides an overview of the relevance of speciation analysis in selenium and mercury research. PubMedGoogle Scholar
  5. 5.
    Vinceti M, Burlingame B, Fillippini T, Naska A, Bargellini A, Borella P. The epidemiology of selenium and human health. In: Hatfield D, Schweizer U, Gladyshev VN, editors. Selenium: its molecular biology and role in human health. 4th edition. New York: Springer Science+Business Media; 2016. p. 365–76.Google Scholar
  6. 6.
    Filippini T, Michalke B, Wise LA, Malagoli C, Malavolti M, Vescovi L, et al. Diet composition and serum levels of selenium species: a cross-sectional study. Food Chem Toxicol. 2018;115:482–90.PubMedGoogle Scholar
  7. 7.
    Bogden JD, Kemp FW, Buse M, Thind IS, Louria DB, Forgacs J, et al. Composition of tobaccos from countries with high or low incidence of lung cancer. I. Selenium, polonium-210, Alternaria, tar, and nicotine. J Natl Cancer Inst. 1981;66:27–31.PubMedGoogle Scholar
  8. 8.
    Heck JE, Park AS, Qiu J, Cockburn M, Ritz B. Risk of leukemia in relation to exposure to ambient air toxics in pregnancy and early childhood. Int J Hyg Environ Health. 2014;217:662–8.PubMedGoogle Scholar
  9. 9.
    Ito K, Mathes R, Ross Z, Nadas A, Thurston G, Matte T. Fine particulate matter constituents associated with cardiovascular hospitalizations and mortality in New York City. Environ Health Perspect. 2011;119:467–73.PubMedGoogle Scholar
  10. 10.
    Hu J, Sun Q, He H. Thermal effects from the release of selenium from a coal combustion during high-temperature processing: a review. Environ Sci Pollut Res Int. 2018;25:13470–8.PubMedGoogle Scholar
  11. 11.
    Santos MD, Flores Soares MC, Martins Baisch PR, Muccillo Baisch AL, Rodrigues da Silva Junior FM. Biomonitoring of trace elements in urine samples of children from a coal-mining region. Chemosphere. 2018;197:622–6.PubMedGoogle Scholar
  12. 12.
    Zeng X, Liu Y, You S, Zeng G, Tan X, Hu X, et al. Spatial distribution, health risk assessment and statistical source identification of the trace elements in surface water from the Xiangjiang River, China. Environ Sci Pollut Res Int. 2015;22:9400–12.PubMedGoogle Scholar
  13. 13.
    Goen T, Schaller B, Jager T, Brau-Dumler C, Schaller KH, Drexler H. Biological monitoring of exposure and effects in workers employed in a selenium-processing plant. Int Arch Occup Environ Health. 2015;88:623–30.PubMedGoogle Scholar
  14. 14.
    Andrews KW, Roseland JM, Gusev PA, Palachuvattil J, Dang PT, Savarala S, et al. Analytical ingredient content and variability of adult multivitamin/mineral products: National estimates for the Dietary Supplement Ingredient database. Am J Clin Nutr. 2017;105:526–39.PubMedGoogle Scholar
  15. 15.
    Berendsen AAM, van Lieshout L, van den Heuvel E, Matthys C, Peter S, de Groot L. Conventional foods, followed by dietary supplements and fortified foods, are the key sources of vitamin D, vitamin B6, and selenium intake in Dutch participants of the NU-AGE study. Nutr Res. 2016;36:1171–81.PubMedGoogle Scholar
  16. 16.
    Kubachka KM, Hanley T, Mantha M, Wilson RA, Falconer TM, Kassa Z, et al. Evaluation of selenium in dietary supplements using elemental speciation. Food Chem. 2017;218:313–20.PubMedGoogle Scholar
  17. 17.
    Brozmanova J, Manikova D, Vlckova V, Chovanec M. Selenium: a double-edged sword for defense and offence in cancer. Arch Toxicol. 2010;84:919–38.PubMedGoogle Scholar
  18. 18.
    Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, et al. Selenium in human health and disease. Antioxid Redox Signal. 2011;14:1337–83.PubMedGoogle Scholar
  19. 19.
    Fordyce F. Selenium geochemistry and health. Ambio. 2007;36:94–7.PubMedGoogle Scholar
  20. 20.
    Lee KH, Jeong D. Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: the selenium paradox (review). Mol Med Rep. 2012;5:299–304.PubMedGoogle Scholar
  21. 21.
    Navarro-Alarcon M, Cabrera-Vique C. Selenium in food and the human body: a review. Sci Total Environ. 2008;400:115–41.PubMedGoogle Scholar
  22. 22.
    • Vinceti M, Filippini T, Del Giovane C, Dennert G, Zwahlen M, Brinkman M, et al. Selenium for preventing cancer. Cochrane Database Syst Rev. 2018;1:CD005195 This review summarizes the effect of selenium on human cancer risk though a systematic review and meta-analysis of experimental and nonexperimental human studies with longitudinal design. PubMedGoogle Scholar
  23. 23.
    Jones GD, Droz B, Greve P, Gottschalk P, Poffet D, McGrath SP, et al. Selenium deficiency risk predicted to increase under future climate change. Proc Natl Acad Sci U S A. 2017;114:2848–53.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Rayman MP. The argument for increasing selenium intake. Proc Nutr Soc. 2002;61:203–15.PubMedGoogle Scholar
  25. 25.
    Vinceti M, Maraldi T, Bergomi M, Malagoli C. Risk of chronic low-dose selenium overexposure in humans: insights from epidemiology and biochemistry. Rev Environ Health. 2009;24:231–48.PubMedGoogle Scholar
  26. 26.
    Vinceti M, Filippini T, Cilloni S, Bargellini A, Vergoni AV, Tsatsakis A, et al. Health risk assessment of environmental selenium: emerging evidence and challenges. Mol Med Rep. 2017;15:3323–35.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci. 2014;39:112–20.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Laporte M, Pavey SA, Rougeux C, Pierron F, Lauzent M, Budzinski H, et al. RAD-sequencing reveals within-generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic eels. Mol Ecol. 2016;25:219–37.PubMedGoogle Scholar
  29. 29.
    Letavayova L, Vlckova V, Brozmanova J. Selenium: from cancer prevention to DNA damage. Toxicology. 2006;227:1–14.PubMedGoogle Scholar
  30. 30.
    Mazokopakis EE, Liontiris MI. Commentary: Health concerns of Brazil nut consumption. J Altern Complement Med. 2018;24:3–6.PubMedGoogle Scholar
  31. 31.
    Misra S, Boylan M, Selvam A, Spallholz JE, Bjornstedt M. Redox-active selenium compounds—from toxicity and cell death to cancer treatment. Nutrients. 2015;7:3536–56.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Berthold HK, Michalke B, Krone W, Guallar E, Gouni-Berthold I. Influence of serum selenium concentrations on hypertension: the lipid analytic Cologne cross-sectional study. J Hypertens. 2012;30:1328–35.PubMedGoogle Scholar
  33. 33.
    Filippini T, Michalke B, Mandrioli J, Tsatsakis AM, Weuve J, Vinceti M. Selenium neurotoxicity and amyotrophic lateral sclerosis: an epidemiologic perspective. In: Michalke B (ed) Selenium, molecular and integrative toxicology,. Springer International Publishing. 2018.Google Scholar
  34. 34.
    • Kristal AR, Darke AK, Morris JS, Tangen CM, Goodman PJ, Thompson IM, et al. Baseline selenium status and effects of selenium and vitamin e supplementation on prostate cancer risk. J Natl Cancer Inst. 2014;106:djt456 This paper reports the excess high-grade prostate risk experienced by selenium-supplemented participants in the SELECT trial, the most powerful selenium trial. PubMedPubMedCentralGoogle Scholar
  35. 35.
    Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147:217–23.PubMedGoogle Scholar
  36. 36.
    Vinceti M, Chiari A, Eichmuller M, Rothman KJ, Filippini T, Malagoli C, et al. A selenium species in cerebrospinal fluid predicts conversion to Alzheimer’s dementia in persons with mild cognitive impairment. Alzheimers Res Ther. 2017;9:100.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Cary L, Naveau A, Migeot V, Rabouan S, Charlet L, Foray N, et al. From water-rock interactions to the DNA: a review of selenium issues. Procedia Earth Planet Sci. 2017;17:698–701.Google Scholar
  38. 38.
    Vinceti M, Wei ET, Malagoli C, Bergomi M, Vivoli G. Adverse health effects of selenium in humans. Rev Environ Health. 2001;16:233–51.PubMedGoogle Scholar
  39. 39.
    Smith MI, Franke KW, Westfall BB. The selenium problem in relation to public health: a preliminary survey to determine the possibility of selenium intoxication in the rural population living on seleniferous soil. Public Health Rep. 1936;51:1496–505.Google Scholar
  40. 40.
    Smith MI, Westfall BB. Further field studies on the selenium problem in relation to public health. Public Health Rep. 1937;52:1375–84.Google Scholar
  41. 41.
    Tsongas TA, Ferguson SW. Human health effects of selenium in a rural Colorado drinking water supply. In: Hemphill DD (ed) Proceedings of “Trace substances in environmental health-XI. A symposium”. University of Missouri, Columbia, pp 30–35. 1977.Google Scholar
  42. 42.
    Tsongas TA, Ferguson SW. Selenium concentrations in human urine and drinking water. In: Kirchgessner N (ed) Proceedings of "Trace Elements in Man and Animal-3". pp 320–321. 1978.Google Scholar
  43. 43.
    Valentine JL, Kang HK, Dang PM, Schluchter M. Selenium concentrations and glutathione peroxidase activities in a population exposed to selenium via drinking water. J Toxicol Environ Health. 1980;6:731–6.PubMedGoogle Scholar
  44. 44.
    Longnecker MP, Taylor PR, Levander OA, Howe M, Veillon C, McAdam PA, et al. Selenium in diet, blood, and toenails in relation to human health in a seleniferous area. Am J Clin Nutr. 1991;53:1288–94.PubMedGoogle Scholar
  45. 45.
    Valentine JL, S. RL, Kang HK, Schluchter M. Effects on human health of exposure to selenium in drinking water. In: Combs GF, Levander OA, Spallholz JE, Oldfield JE (eds) Proceedings of "Selenium in Biology and Medicine - Part B". Van Nostrand Reihold Co, New York, pp 675–687. 1987.Google Scholar
  46. 46.
    Valentine JL, Faraji B, Kang HK. Human glutathione peroxidase activity in cases of high selenium exposures. Environ Res. 1988;45:16–27.PubMedGoogle Scholar
  47. 47.
    Saint-Amour D, Roy MS, Bastien C, Ayotte P, Dewailly E, Despres C, et al. Alterations of visual evoked potentials in preschool Inuit children exposed to methylmercury and polychlorinated biphenyls from a marine diet. Neurotoxicology. 2006;27:567–78.PubMedGoogle Scholar
  48. 48.
    Brätter P, Negretti de Brätter VE. Influence of high dietary intake on the thyroid hormone level in human serum. J Trace Elem Med Biol. 1996;10:163–6.PubMedGoogle Scholar
  49. 49.
    Jaffe WG, Ruphael M, Mondragon MC, Cuevas MA. Estudio clinico y bioquimico en ninos escolares de una zona selenifera. Arch Latinoam Nutr. 1972;22:595–611.PubMedGoogle Scholar
  50. 50.
    Lemire M, Philibert A, Fillion M, Passos CJ, Guimaraes JR, Jr Barbosa F, et al. No evidence of selenosis from a selenium-rich diet in the Brazilian Amazon. Environ Int. 2012;40:128–36.PubMedGoogle Scholar
  51. 51.
    Lemire M, Fillion M, Frenette B, Passos CJ, Guimaraes JR, Barbosa F, Jr. et al. Selenium from dietary sources and motor functions in the Brazilian Amazon. Neurotoxicology 2011;32:944–953.Google Scholar
  52. 52.
    Martens IB, Cardoso BR, Hare DJ, Niedzwiecki MM, Lajolo FM, Martens A, et al. Selenium status in preschool children receiving a Brazil nut-enriched diet. Nutrition. 2015;31:1339–43.PubMedGoogle Scholar
  53. 53.
    Vinceti M, Ballotari P, Steinmaus C, Malagoli C, Luberto F, Malavolti M, et al. Long-term mortality patterns in a residential cohort exposed to inorganic selenium in drinking water. Environ Res. 2016;150:348–56.PubMedGoogle Scholar
  54. 54.
    • Vinceti M, Vicentini M, Wise LA, Sacchettini C, Malagoli C, Ballotari P, et al. Cancer incidence following long-term consumption of drinking water with high inorganic selenium content. Sci Total Environ. 2018;635C:390–6 This cohort study reports the long-term effects on cancer risk of a naturally occurring exposure to inorganic selenium through drinking water. Google Scholar
  55. 55.
    Vinceti M, Cann CI, Calzolari E, Vivoli R, Garavelli L, Bergomi M. Reproductive outcomes in a population exposed long-term to inorganic selenium via drinking water. Sci Total Environ. 2000;250:1–7.PubMedGoogle Scholar
  56. 56.
    Vinceti M, Crespi CM, Malagoli C, Bottecchi I, Ferrari A, Sieri S, et al. A case-control study of the risk of cutaneous melanoma associated with three selenium exposure indicators. Tumori. 2012;98:287–95.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Vinceti M, Crespi CM, Bonvicini F, Malagoli C, Ferrante M, Marmiroli S, et al. The need for a reassessment of the safe upper limit of selenium in drinking water. Sci Total Environ. 2013;443:633–42.PubMedGoogle Scholar
  58. 58.
    Yang GQ, Wang SZ, Zhou RH, Sun SZ. Endemic selenium intoxication of humans in China. Am J Clin Nutr. 1983;37:872–81.PubMedGoogle Scholar
  59. 59.
    Keshan Disease Research Group of the Chinese Academy of Medical Sciences. Observations on effect of sodium selenite in prevention of Keshan disease. Chin Med J. 1979;92:471–6.Google Scholar
  60. 60.
    Johnson CC, Ge X, Green KA, Liu X. Selenium distribution in the local environment of selected villages of the Keshan disease belt, Zhangjiakou District, Hebei Province, People’s Republic of China. Appl Geochem. 2000;15:385–401.Google Scholar
  61. 61.
    Fordyce FM, Zhan G, Green K, Liu X. Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China. Appl Geochem. 2000;15:117–32.Google Scholar
  62. 62.
    Qin HB, Zhu JM, Liang L, Wang MS, Su H. The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas, China. Environ Int. 2013;52:66–74.PubMedGoogle Scholar
  63. 63.
    Hira CK, Partal K, Dhillon KS. Dietary selenium intake by men and women in high and low selenium areas of Punjab. Public Health Nutr. 2004;7:39–43.PubMedGoogle Scholar
  64. 64.
    Chawla R, Loomba R, Chaudhary RJ, Singh S, Dhillon KS. Impact of high selenium exposure on organ function and biochemical profile of the rural population living in seleniferous soils in Punjab, India. In: Banuelos GS, Lin Z-Q, Ferreira Moraes M, Guimaraes Guilherme LR, Rodrigues dos Reis A (eds) Global advance in selenium research from thepry to application. CRC Press. 2016.Google Scholar
  65. 65.
    Fordyce FM, Johnson CC, Navaratna UR, Appleton JD, Dissanayake CB. Selenium and iodine in soil, rice and drinking water in relation to endemic goitre in Sri Lanka. Sci Total Environ. 2000;263:127–41.PubMedGoogle Scholar
  66. 66.
    Hu XF, Eccles KM, Chan HM. High selenium exposure lowers the odds ratios for hypertension, stroke, and myocardial infarction associated with mercury exposure among Inuit in Canada. Environ Int. 2017;102:200–6.PubMedGoogle Scholar
  67. 67.
    Dinh QT, Cui Z, Huang J, Tran TAT, Wang D, Yang W, et al. Selenium distribution in the Chinese environment and its relationship with human health: a review. Environ Int. 2018;112:294–309.PubMedGoogle Scholar
  68. 68.
    Du Y, Luo K, Ni R, Hussain R. Selenium and hazardous elements distribution in plant-soil-water system and human health risk assessment of Lower Cambrian, Southern Shaanxi, China. Environ Geochem Health. 2018 (in press).Google Scholar
  69. 69.
    Winther KH, Bonnema SJ, Cold F, Debrabant B, Nybo M, Cold S, et al. Does selenium supplementation affect thyroid function? Results from a randomized, controlled, double-blinded trial in a Danish population. Eur J Endocrinol. 2015;172:657–67.PubMedGoogle Scholar
  70. 70.
    Rayman MP, Thompson AJ, Bekaert B, Catterick J, Galassini R, Hall E, et al. Randomized controlled trial of the effect of selenium supplementation on thyroid function in the elderly in the United Kingdom. Am J Clin Nutr. 2008;87:370–8.PubMedGoogle Scholar
  71. 71.
    Keshan Disease Research Group of the Chinese Academy of Medical Sciences. Epidemiologic studies on the etiologic relationship of selenium and Keshan disease. Chin Med J. 1979;92:477–82.Google Scholar
  72. 72.
    Cheng YY, Qian PC. The effect of selenium-fortified table salt in the prevention of Keshan disease on a population of 1.05 million. Biomed Environ Sci. 1990;3:422–8.PubMedGoogle Scholar
  73. 73.
    Zhou H, Wang T, Li Q, Li D. Prevention of Keshan disease by selenium supplementation: a systematic review and meta-analysis. Biol Trace Elem Res 2018 (in press).Google Scholar
  74. 74.
    Yang G, Chen J, Wen Z, Ge K, Zhu L, Chen X, et al. The role of selenium in Keshan disease. Adv Nutr Res. 1984;6:203–31.PubMedGoogle Scholar
  75. 75.
    Wang T, Li Q. Interpretation of selenium deficiency and Keshan disease with causal inference of modern epidemiology. In: The International Selenium Seminar 2015, Moscow, 2015. Organizing Committee of the International Selenium Seminar 2015. Year.Google Scholar
  76. 76.
    Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr. 2003;133:1463S–7S.PubMedGoogle Scholar
  77. 77.
    Lei C, Niu X, Ma X, Wei J. Is selenium deficiency really the cause of Keshan disease? Environ Geochem Health. 2011;33:183–8.PubMedGoogle Scholar
  78. 78.
    Xu GL, Wang SC, Gu BQ, Yang YX, Song HB, Xue WL, et al. Further investigation on the role of selenium deficiency in the aetiology and pathogenesis of Keshan disease. Biomed Environ Sci. 1997;10:316–26.PubMedGoogle Scholar
  79. 79.
    Cermelli C, Vinceti M, Scaltriti E, Bazzani E, Beretti F, Vivoli G, et al. Selenite inhibition of Coxsackie virus B5 replication: implications on the etiology of Keshan disease. J Trace Elem Med Biol. 2002;16:41–6.PubMedGoogle Scholar
  80. 80.
    Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements. Vitamin and mineral requirements in human nutrition. Second ed. Geneva: World Health Organization and Food and Agriculture Organization of the United Nations; 2004.Google Scholar
  81. 81.
    Ning Y, Wang X, Zhang P, Anatoly SV, Prakash NT, Li C et al. Imbalance of dietary nutrients and the associated differentially expressed genes and pathways may play important roles in juvenile Kashin-Beck disease. J Trace Elem Med Biol. 2018;50:441–60.Google Scholar
  82. 82.
    Shi Z, Pan P, Feng Y, Kan Z, Li Z, Wei F. Environmental water chemistry and possible correlation with Kaschin-Beck disease (KBD) in northwestern Sichuan, China. Environ Int. 2017;99:282–92.PubMedGoogle Scholar
  83. 83.
    Xie D, Liao Y, Yue J, Zhang C, Wang Y, Deng C, et al. Effects of five types of selenium supplementation for treatment of Kashin-Beck disease in children: a systematic review and network meta-analysis. BMJ Open. 2018;8:e017883.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Fan A, Vinceti M. Selenium and its compunds. In: John Wiley & Sons I (ed) Hamilton & Hardy’s industrial toxicology, sixth edition. John Wiley & Sons, Inc. , Hoboken, NJ. 2015.Google Scholar
  85. 85.
    Schiavon M, Pilon-Smits EA. The fascinating facets of plant selenium accumulation—biochemistry, physiology, evolution and ecology. New Phytol. 2016.Google Scholar
  86. 86.
    Weekley CM, Harris HH. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev. 2013;42:8870–94.PubMedGoogle Scholar
  87. 87.
    Dolgova NV, Hackett MJ, MacDonald TC, Nehzati S, James AK, Krone PH, et al. Distribution of selenium in zebrafish larvae after exposure to organic and inorganic selenium forms. Metallomics. 2016;8:305–12.PubMedGoogle Scholar
  88. 88.
    Maraldi T, Riccio M, Zambonin L, Vinceti M, De Pol A, Hakim G. Low levels of selenium compounds are selectively toxic for a human neuron cell line through ROS/RNS increase and apoptotic process activation. Neurotoxicology 2011;32:180–187.Google Scholar
  89. 89.
    Solovyev N, Berthele A, Michalke B. Selenium speciation in paired serum and cerebrospinal fluid samples. Anal Bioanal Chem. 2013;405:1875–84.PubMedGoogle Scholar
  90. 90.
    Vinceti M, Grill P, Malagoli C, Filippini T, Storani S, Malavolti M, et al. Selenium speciation in human serum and its implications for epidemiologic research: a cross-sectional study. J Trace Elem Med Biol. 2015;31:1–10.PubMedGoogle Scholar
  91. 91.
    Vinceti M, Mandrioli J, Borella P, Michalke B, Tsatsakis A, Finkelstein Y. Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicol Lett. 2014;230:295–303.PubMedGoogle Scholar
  92. 92.
    Vinceti M, Guidetti D, Pinotti M, Rovesti S, Merlin M, Vescovi L, et al. Amyotrophic lateral sclerosis after long-term exposure to drinking water with high selenium content. Epidemiology. 1996;7:529–32.PubMedGoogle Scholar
  93. 93.
    Vinceti M, Bonvicini F, Rothman KJ, Vescovi L, Wang F. The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case-control study. Environ Health. 2010;9:77.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Gobi N, Vaseeharan B, Rekha R, Vijayakumar S, Faggio C. Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. Ecotoxicol Environ Saf. 2018;162:147–59.PubMedGoogle Scholar
  95. 95.
    Kim JH, Kang JC. Oxidative stress, neurotoxicity, and non-specific immune responses in juvenile red sea bream, Pagrus major, exposed to different waterborne selenium concentrations. Chemosphere. 2015;135:46–52.PubMedGoogle Scholar
  96. 96.
    Maass F, Lingor P. Bioelemental patterns in the cerebrospinal fluid as potential biomarkers for neurodegenerative disorders. Neural Regen Res. 2018;13:1356–7.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Maass F, Michalke B, Leha A, Boerger M, Zerr I, Koch JC, et al. Elemental fingerprint as a cerebrospinal fluid biomarker for the diagnosis of Parkinson’s disease. J Neurochem. 2018;145:342–51.PubMedGoogle Scholar
  98. 98.
    Mandrioli J, Michalke B, Solovyev N, Grill P, Violi F, Lunetta C, et al. Elevated levels of selenium species in cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated gene mutations. Neurodegener Dis. 2017;17:171–80.PubMedGoogle Scholar
  99. 99.
    Naderi M, Salahinejad A, Ferrari MCO, Niyogi S, Chivers DP. Dopaminergic dysregulation and impaired associative learning behavior in zebrafish during chronic dietary exposure to selenium. Environ Pollut. 2018;237:174–85.PubMedGoogle Scholar
  100. 100.
    Vinceti M, Solovyev N, Mandrioli J, Crespi CM, Bonvicini F, Arcolin E, et al. Cerebrospinal fluid of newly diagnosed amyotrophic lateral sclerosis patients exhibits abnormal levels of selenium species including elevated selenite. Neurotoxicology. 2013;38:25–32.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Amoros R, Murcia M, Ballester F, Broberg K, Iniguez C, Rebagliato M, et al. Selenium status during pregnancy: influential factors and effects on neuropsychological development among Spanish infants. Sci Total Environ. 2018;610-611:741–9.PubMedGoogle Scholar
  102. 102.
    Cardoso BR, Roberts BR, Bush AI, Hare DJ. Selenium, selenoproteins and neurodegenerative diseases. Metallomics. 2015;7:1213–28.PubMedGoogle Scholar
  103. 103.
    Oken E, Rifas-Shiman SL, Amarasiriwardena C, Jayawardene I, Bellinger DC, Hibbeln JR, et al. Maternal prenatal fish consumption and cognition in mid childhood: mercury, fatty acids, and selenium. Neurotoxicol Teratol. 2016;57:71–8.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Skroder H, Kippler M, Tofail F, Vahter M. Early-life selenium status and cognitive function at 5 and 10 years of age in Bangladeshi children. Environ Health Perspect. 2017;125:117003.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Wasserman GA, Liu X, Parvez F, Chen Y, Factor-Litvak P, LoIacono NJ, et al. A cross-sectional study of water arsenic exposure and intellectual function in adolescence in Araihazar, Bangladesh. Environ Int. 2018;118:304–13.PubMedGoogle Scholar
  106. 106.
    Yang X, Yu X, Fu H, Li L, Ren T. Different levels of prenatal zinc and selenium had different effects on neonatal neurobehavioral development. Neurotoxicology. 2013;37:35–9.PubMedGoogle Scholar
  107. 107.
    Hughes DJ, Duarte-Salles T, Hybsier S, Trichopoulou A, Stepien M, Aleksandrova K, et al. Prediagnostic selenium status and hepatobiliary cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr. 2016;104:406–14.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Rayman MP, Winther KH, Pastor-Barriuso R, Cold F, Thvilum M, Stranges S et al. Effect of long-term selenium supplementation on mortality: results from a multiple-dose, randomised controlled trial. Free Radic Biol Med 2018 (in press).Google Scholar
  109. 109.
    Combs GF Jr. Selenium in global food systems. Br J Nutr. 2001;85:517–47.PubMedGoogle Scholar
  110. 110.
    Pritchett NR, Burgert SL, Murphy GA, Brockman JD, White RE, Lando J, et al. Cross sectional study of serum selenium concentration and esophageal squamous dysplasia in western Kenya. BMC Cancer. 2017;17:835.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Su L, Jin Y, Unverzagt FW, Liang C, Cheng Y, Hake AM, et al. Longitudinal association between selenium levels and hypertension in a rural elderly Chinese cohort. J Nutr Health Aging. 2016;20:983–8.PubMedGoogle Scholar
  112. 112.
    Wu G, Li Z, Ju W, Yang X, Fu X, Gao X. Cross-sectional study: relationship between serum selenium and hypertension in the Shandong Province of China. Biol Trace Elem Res. 2018;185:295–301.Google Scholar
  113. 113.
    • Vinceti M, Filippini T, Rothman KJ. Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Epidemiol. 2018;33:789–810. This review provides an updated and comprehensive dose-response assessment of experimental and nonexperimental studies about selenium and type 2 diabetes risk. Google Scholar
  114. 114.
    Duffield-Lillico AJ, Reid ME, Turnbull BW, Combs GFJ, Slate EH, Fischbach LA, et al. Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: a summary report of the Nutritional Prevention of Cancer Trial. Cancer Epidemiol Biomark Prev. 2002;11:630–9.Google Scholar
  115. 115.
    Duffield-Lillico AJ, Slate EH, Reid ME, Turnbull BW, Wilkins PA, Combs GF Jr, et al. Selenium supplementation and secondary prevention of nonmelanoma skin cancer in a randomized trial. J Natl Cancer Inst. 2003;95:1477–81.PubMedGoogle Scholar
  116. 116.
    Reid ME, Duffield-Lillico AJ, Slate E, Natarajan N, Turnbull B, Jacobs E, et al. The nutritional prevention of cancer: 400 mcg per day selenium treatment. Nutr Cancer. 2008;60:155–63.PubMedGoogle Scholar
  117. 117.
    Dreno B, Euvrard S, Frances C, Moyse D, Nandeuil A. Effect of selenium intake on the prevention of cutaneous epithelial lesions in organ transplant recipients. Eur J Dermatol. 2007;17:140–5.PubMedGoogle Scholar
  118. 118.
    Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2009;301:39–51.PubMedGoogle Scholar
  119. 119.
    Klein EA, Thompson IM Jr, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2011;306:1549–56.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Lance P, Alberts DS, Thompson PA, Fales L, Wang F, San Jose J, et al. Colorectal adenomas in participants of the SELECT randomized trial of selenium and vitamin E for prostate cancer prevention. Cancer Prev Res (Phila). 2017;10:45–54.Google Scholar
  121. 121.
    Lotan Y, Goodman PJ, Youssef RF, Svatek RS, Shariat SF, Tangen CM, et al. Evaluation of vitamin E and selenium supplementation for the prevention of bladder cancer in SWOG coordinated SELECT. J Urol. 2012;187:2005–10.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Lubinski J, Jaworska K, Durda K, Jakubowska A, Huzarski T, Byrski T, et al. Selenium and the risk of cancer in BRCA1 carriers. Hered Cancer Clin Pract. 2011;9(Suppl 2):A5.PubMedCentralGoogle Scholar
  123. 123.
    Marshall JR, Tangen CM, Sakr WA, Wood DP Jr, Berry DL, Klein EA, et al. Phase III trial of selenium to prevent prostate cancer in men with high-grade prostatic intraepithelial neoplasia: SWOG S9917. Cancer Prev Res (Phila). 2011;4:1761–9.Google Scholar
  124. 124.
    Algotar AM, Stratton MS, Ahmann FR, Ranger-Moore J, Nagle RB, Thompson PA, et al. Phase 3 clinical trial investigating the effect of selenium supplementation in men at high-risk for prostate cancer. Prostate. 2013;73:328–35.PubMedGoogle Scholar
  125. 125.
    Karp DD, Lee SJ, Keller SM, Wright GS, Aisner S, Belinsky SA, et al. Randomized, double-blind, placebo-controlled, phase III chemoprevention trial of selenium supplementation in patients with resected stage I non-small-cell lung cancer: ECOG 5597. J Clin Oncol. 2013;31:4179–87.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Thompson PA, Ashbeck EL, Roe DJ, Fales L, Buckmeier J, Wang F, et al. Selenium supplementation for prevention of colorectal adenomas and risk of associated type 2 diabetes. J Natl Cancer Inst. 2016;108:djw152.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Haldimann M, Venner TY, Zimmerli B. Determination of selenium in the serum of healthy Swiss adults and correlation to dietary intake. J Trace Elem Med Biol. 1996;10:31–45.PubMedGoogle Scholar
  128. 128.
    Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions 5.1.0 [updated March 2011. Cochrane Collaboration 2011.Google Scholar
  129. 129.
    Rothman KJ. Six persistent research misconceptions. J Gen Intern Med. 2014;29:1060–4.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Vinceti M, Filippini T, Cilloni S, Crespi CM. The epidemiology of selenium and human cancer. Adv Cancer Res. 2017;136:1–48.PubMedGoogle Scholar
  131. 131.
    Brigo F, Storti M, Lochner P, Tezzon F, Nardone R. Selenium supplementation for primary prevention of cardiovascular disease: proof of no effectiveness. Nutr Metab Cardiovasc Dis. 2014;24:e2–3.PubMedGoogle Scholar
  132. 132.
    Rees K, Hartley L, Day C, Flowers N, Clarke A, Stranges S. Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;1:CD009671.Google Scholar
  133. 133.
    Kong Z, Wang F, Ji S, Deng X, Xia Z. Selenium supplementation for sepsis: a meta-analysis of randomized controlled trials. Am J Emerg Med. 2013;31:1170–5.PubMedGoogle Scholar
  134. 134.
    Manzanares W, Lemieux M, Elke G, Langlois PL, Bloos F, Heyland DK. High-dose intravenous selenium does not improve clinical outcomes in the critically ill: a systematic review and meta-analysis. Crit Care. 2016;20:356.PubMedPubMedCentralGoogle Scholar
  135. 135.
    • Kryscio RJ, Abner EL, Caban-Holt A, Lovell M, Goodman P, Darke AK, et al. Association of antioxidant supplement use and dementia in the prevention of Alzheimer’s disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol. 2017;74:567–73 This paper reports the lack of effects of selenium supplementation in the prevention of Alzheimer’s dementia in the large SELECT trial. PubMedPubMedCentralGoogle Scholar
  136. 136.
    Cold F, Winther KH, Pastor-Barriuso R, Rayman MP, Guallar E, Nybo M, et al. Randomised controlled trial of the effect of long-term selenium supplementation on plasma cholesterol in an elderly Danish population. Br J Nutr. 2015;114:1807–18.PubMedGoogle Scholar
  137. 137.
    Mao J, Pop VJ, Bath SC, Vader HL, Redman CW, Rayman MP. Effect of low-dose selenium on thyroid autoimmunity and thyroid function in UK pregnant women with mild-to-moderate iodine deficiency. Eur J Nutr. 2016;55:55–61.PubMedGoogle Scholar
  138. 138.
    Ivory K, Prieto E, Spinks C, Armah CN, Goldson AJ, Dainty JR, et al. Selenium supplementation has beneficial and detrimental effects on immunity to influenza vaccine in older adults. Clin Nutr. 2017;36:407–15.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Baum MK, Campa A, Lai S, Sales Martinez S, Tsalaile L, Burns P, et al. Effect of micronutrient supplementation on disease progression in asymptomatic, antiretroviral-naive, HIV-infected adults in Botswana: a randomized clinical trial. JAMA. 2013;310:2154–63.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Sudfeld CR, Aboud S, Kupka R, Mugusi FM, Fawzi WW. Effect of selenium supplementation on HIV-1 RNA detection in breast milk of Tanzanian women. Nutrition. 2014;30:1081–4.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Kamwesiga J, Mutabazi V, Kayumba J, Tayari JC, Uwimbabazi JC, Batanage G, et al. Effect of selenium supplementation on CD4+ T-cell recovery, viral suppression and morbidity of HIV-infected patients in Rwanda: a randomized controlled trial. AIDS. 2015;29:1045–52.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Christensen K, Werner M, Malecki K. Serum selenium and lipid levels: associations observed in the National Health and Nutrition Examination Survey (NHANES) 2011–2012. Environ Res. 2015;140:76–84.PubMedGoogle Scholar
  143. 143.
    Laclaustra M, Stranges S, Navas-Acien A, Ordovas JM, Guallar E. Serum selenium and serum lipids in US adults: National Health and Nutrition Examination Survey (NHANES) 2003–2004. Atherosclerosis. 2010;210:643–8.PubMedPubMedCentralGoogle Scholar
  144. 144.
    EFSA NDA Panel. Scientific opinion on dietary reference values for selenium. EFSA J. 2014;12:3846.Google Scholar
  145. 145.
    Clark LC, Combs GFJ, Turnbull BW, Slate EH, Chalker DK, Chow J, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA. 1996;276:1957–63.PubMedGoogle Scholar
  146. 146.
    Bailey RL, Gahche JJ, Lentino CV, Dwyer JT, Engel JS, Thomas PR, et al. Dietary supplement use in the United States, 2003–2006. J Nutr. 2011;141:261–6.PubMedGoogle Scholar
  147. 147.
    Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care. 2014;17:40–4.PubMedGoogle Scholar
  148. 148.
    Moyer VA, Force USPST. Vitamin, mineral, and multivitamin supplements for the primary prevention of cardiovascular disease and cancer: U.S. Preventive services Task Force recommendation statement. Ann Intern Med. 2014;160:558–64.PubMedGoogle Scholar
  149. 149.
    Vinceti M, Filippini T, Del Giovane C, Crespi CM. Exploring inconsistencies between observational and experimental studies of selenium and diabetes risk. Cochrane Database Syst Rev. 2015;Suppl:181.Google Scholar
  150. 150.
    Birt DF, Julius AD, Runice CE, White LT, Lawson T, Pour PM. Enhancement of BOP-induced pancreatic carcinogenesis in selenium-fed Syrian golden hamsters under specific dietary conditions. Nutr Cancer. 1988;11:21–33.PubMedGoogle Scholar
  151. 151.
    Chen X, Mikhail SS, Ding YW, Yang G, Bondoc F, Yang CS. Effects of vitamin E and selenium supplementation on esophageal adenocarcinogenesis in a surgical model with rats. Carcinogenesis. 2000;21:1531–6.PubMedGoogle Scholar
  152. 152.
    Kandas NO, Randolph C, Bosland MC. Differential effects of selenium on benign and malignant prostate epithelial cells: stimulation of LNCaP cell growth by noncytotoxic, low selenite concentrations. Nutr Cancer. 2009;61:251–64.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Kasaikina MV, Turanov AA, Avanesov A, Schweizer U, Seeher S, Bronson RT, et al. Contrasting roles of dietary selenium and selenoproteins in chemically induced hepatocarcinogenesis. Carcinogenesis. 2013;34:1089–95.PubMedPubMedCentralGoogle Scholar
  154. 154.
    National Toxicology Program. Selenium sulfide. Rep Carcinog. 2011;12:376–7.Google Scholar
  155. 155.
    Novoselov SV, Calvisi DF, Labunskyy VM, Factor VM, Carlson BA, Fomenko DE, et al. Selenoprotein deficiency and high levels of selenium compounds can effectively inhibit hepatocarcinogenesis in transgenic mice. Oncogene. 2005;24:8003–11.PubMedGoogle Scholar
  156. 156.
    • Peters KM, Carlson BA, Gladyshev VN, Tsuji PA. Selenoproteins in colon cancer. Free Radic Biol Med. 2018 (in press). This paper provides an updated overview of the complex and intriguing role of selenoproteins in human cancer and of their role as future targets for clinical interventions. Google Scholar
  157. 157.
    Rose AH, Bertino P, Hoffmann FW, Gaudino G, Carbone M, Hoffmann PR. Increasing dietary selenium elevates reducing capacity and ERK activation associated with accelerated progression of select mesothelioma tumors. Am J Pathol. 2014;184:1041–9.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Su YP, Tang JM, Tang Y, Gao HY. Histological and ultrastructural changes induced by selenium in early experimental gastric carcinogenesis. World J Gastroenterol. 2005;11:4457–60.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Takata Y, Kristal AR, Santella RM, King IB, Duggan DJ, Lampe JW, et al. Selenium, selenoenzymes, oxidative stress and risk of neoplastic progression from Barrett’s esophagus: results from biomarkers and genetic variants. PLoS One. 2012;e38612:7.Google Scholar
  160. 160.
    Takata Y, Xiang YB, Burk RF, Li H, Hill KE, Cai H et al. Plasma selenoprotein P concentration and lung cancer risk: results from a case-control study nested within the Shanghai Men’s Health Study. Carcinogenesis 2018 (in press).Google Scholar
  161. 161.
    Vinceti M, Crespi CM, Malagoli C, Del Giovane C, Krogh V. Friend or foe? The current epidemiologic evidence on selenium and human cancer risk. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2013;31:305–341.Google Scholar
  162. 162.
    Bleys J, Navas-Acien A, Guallar E. Selenium and diabetes: more bad news for supplements. Ann Intern Med. 2007;147:271–2.PubMedGoogle Scholar
  163. 163.
    Bruhn RL, Stamer WD, Herrygers LA, Levine JM, Noecker RJ. Relationship between glaucoma and selenium levels in plasma and aqueous humour. Br J Ophthalmol. 2009;93:1155–8.PubMedGoogle Scholar
  164. 164.
    Moyad MA. Heart healthy=prostate healthy: SELECT, the symbolic end of preventing prostate cancer via heart unhealthy and over anti-oxidation mechanisms? Asian J Androl. 2012;14:243–4.PubMedGoogle Scholar
  165. 165.
    Ashton K, Hooper L, Harvey LJ, Hurst R, Casgrain A, Fairweather-Tait SJ. Methods of assessment of selenium status in humans: a systematic review. Am J Clin Nutr. 2009;89:2025S–39S.PubMedGoogle Scholar
  166. 166.
    Combs GF Jr. Biomarkers of selenium status. Nutrients. 2015;7:2209–36.PubMedPubMedCentralGoogle Scholar
  167. 167.
    • Michalke B, Willkommena D, Drobyshevb E, Solovyev N. The importance of speciation analysis in neurodegeneration research. Trends Anal Chem. 2018;104:160–70 This review illustrates the selenium speciation issues with particular reference to neurodegenerative diseases. Emphasis is given to selenium measurements in cerebrospinal fluid and brain. Google Scholar
  168. 168.
    Fairweather-Tait SJ, Collings R, Hurst R. Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr. 2010;91:1484S–91S.PubMedGoogle Scholar
  169. 169.
    Filippini T, Cilloni S, Malavolti M, Violi F, Malagoli C, Tesauro M et al. Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a northern Italy community. J Trace Elem Med Biol. 2018;50:508–17Google Scholar
  170. 170.
    Filippini T, Ferrari A, Michalke B, Grill P, Vescovi L, Salvia C, et al. Toenail selenium as an indicator of environmental exposure: a cross-sectional study. Mol Med Rep. 2017;15:3405–12.PubMedGoogle Scholar
  171. 171.
    Behne D, Kyriakopoulos A, Scheid S, Gessner H. Effects of chemical form and dosage on the incorporation of selenium into tissue proteins in rats. J Nutr. 1991;121:806–14.PubMedGoogle Scholar
  172. 172.
    Behne D, Gessner H, Kyriakopoulos A. Information on the selenium status of several body compartments of rats from the selenium concentrations in blood fractions, hair and nails. J Trace Elem Med Biol. 1996;10:174–9.PubMedGoogle Scholar
  173. 173.
    Salbe AD, Levander OA. Effect of various dietary factors on the deposition of selenium in the hair and nails of rats. J Nutr. 1990;120:200–6.PubMedGoogle Scholar
  174. 174.
    Salbe AD, Levander OA. Comparative toxicity and tissue retention of selenium in methionine-deficient rats fed sodium selenate or L-selenomethionine. J Nutr. 1990;120:207–12.PubMedGoogle Scholar
  175. 175.
    Shiobara Y, Yoshida T, Suzuki KT. Effects of dietary selenium species on Se concentrations in hair, blood, and urine. Toxicol Appl Pharmacol. 1998;152:309–14.PubMedGoogle Scholar
  176. 176.
    Hawkes WC, Richter BD, Alkan Z, Souza EC, Derricote M, Mackey BE, et al. Response of selenium status indicators to supplementation of healthy North American men with high-selenium yeast. Biol Trace Elem Res. 2008;122:107–21.PubMedGoogle Scholar
  177. 177.
    Vinceti M, Rovesti S, Bergomi M, Vivoli G. The epidemiology of selenium and human cancer. Tumori. 2000;86:105–18.PubMedGoogle Scholar
  178. 178.
    Solovyev N, Vinceti M, Grill P, Mandrioli J, Michalke B. Redox speciation of iron, manganese, and copper in cerebrospinal fluid by strong cation exchange chromatography—sector field inductively coupled plasma mass spectrometry. Anal Chim Acta. 2017;973:25–33.PubMedGoogle Scholar
  179. 179.
    Michalke B, Solovyev N, Vinceti M. Se-speciation investigations at neural barrier (NB). In: 11th International Symposium ons elenium in Biology and Medicine, Stockholm, 2017. Year.Google Scholar
  180. 180.
    Labunskyy VM, Lee BC, Handy DE, Loscalzo J, Hatfield DL, Gladyshev VN. Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid Redox Signal. 2011;14:2327–36.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 2014;94:739–77.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Mita Y, Nakayama K, Inari S, Nishito Y, Yoshioka Y, Sakai N, et al. Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat Commun. 2017;8:1658.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Tsuji PA, Carlson BA, Yoo MH, Naranjo-Suarez S, Xu XM, He Y, et al. The 15kDa selenoprotein and thioredoxin reductase 1 promote colon cancer by different pathways. PLoS One. 2015;10:e0124487.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Chandra RK, Hambreaus L, Puri S, Au B, Kutty KM. Immune response of healthy volunteers given supplements of zinc or selenium. FASEB J. 1993;A23.Google Scholar
  185. 185.
    Galan-Chilet I, Tellez-Plaza M, Guallar E, De Marco G, Lopez-Izquierdo R, Gonzalez-Manzano I, et al. Plasma selenium levels and oxidative stress biomarkers: a gene-environment interaction population-based study. Free Radic Biol Med. 2014;74:229–36.PubMedGoogle Scholar
  186. 186.
    Ravn-Haren G, Krath BN, Overvad K, Cold S, Moesgaard S, Larsen EH, et al. Effect of long-term selenium yeast intervention on activity and gene expression of antioxidant and xenobiotic metabolising enzymes in healthy elderly volunteers from the Danish Prevention of Cancer by Intervention by Selenium (PRECISE) pilot study. Br J Nutr. 2008;99:1190–8.PubMedGoogle Scholar
  187. 187.
    Stranges S, Sieri S, Vinceti M, Grioni S, Guallar E, Laclaustra M, et al. A prospective study of dietary selenium intake and risk of type 2 diabetes. BMC Public Health. 2010;10:564.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Ferlemi AV, Mermigki PG, Makri OE, Anagnostopoulos D, Koulakiotis NS, Margarity M, et al. Cerebral area differential redox response of neonatal rats to selenite-induced oxidative stress and to concurrent administration of highbush blueberry leaf polyphenols. Neurochem Res. 2015;40:2280–92.PubMedGoogle Scholar
  189. 189.
    Naderi M, Salahinejad A, Jamwal A, Chivers DP, Niyogi S. Chronic dietary selenomethionine exposure induces oxidative stress, dopaminergic dysfunction, and cognitive impairment in adult zebrafish (Danio rerio). Environ Sci Technol. 2017;51:12879–88.PubMedGoogle Scholar
  190. 190.
    Pettem CM, Briens JM, Janz DM, Weber LP. Cardiometabolic response of juvenile rainbow trout exposed to dietary selenomethionine. Aquat Toxicol. 2018;198:175–89.PubMedGoogle Scholar
  191. 191.
    Plateau P, Saveanu C, Lestini R, Dauplais M, Decourty L, Jacquier A, et al. Exposure to selenomethionine causes selenocysteine misincorporation and protein aggregation in Saccharomyces cerevisiae. Sci Rep. 2017;7:44761.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Van Hoewyk D. Defects in endoplasmic reticulum-associated degradation (ERAD) increase selenate sensitivity in Arabidopsis. Plant Signal Behav. 2018;13:e1171451.PubMedGoogle Scholar
  193. 193.
    Hafeman DG, Sunde RA, Hoekstra WG. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr. 1974;104:580–7.PubMedGoogle Scholar
  194. 194.
    Macallan DC, Sedgwick P. Selenium supplementation and selenoenzyme activity. Clin Sci. 2000;99:579–81.PubMedGoogle Scholar
  195. 195.
    Lobanov AV, Hatfield DL, Gladyshev VN. Reduced reliance on the trace element selenium during evolution of mammals. Genome Biol. 2008;9:R62.PubMedPubMedCentralGoogle Scholar
  196. 196.
    Algotar AM, Behnejad R, Singh P, Thompson PA, Hsu CH, Stratton SP. Effect of selenium supplementation on proteomic serum biomarkers in elderly men. J Frailty Aging. 2015;4:107–10.PubMedPubMedCentralGoogle Scholar
  197. 197.
    Naderi M, Keyvanshokooh S, Salati AP, Ghaedi A. Proteomic analysis of liver tissue from rainbow trout (Oncorhynchus mykiss) under high rearing density after administration of dietary vitamin E and selenium nanoparticles. Comp Biochem Physiol Part D Genomics Proteomics. 2017;22:10–9.PubMedGoogle Scholar
  198. 198.
    Sinha R, Sinha I, Facompre N, Russell S, Somiari RI, Richie JP Jr, et al. Selenium-responsive proteins in the sera of selenium-enriched yeast-supplemented healthy African American and Caucasian men. Cancer Epidemiol Biomark Prev. 2010;19:2332–40.Google Scholar
  199. 199.
    Sun H, Dai H, Wang X, Wang G. Physiological and proteomic analysis of selenium-mediated tolerance to Cd stress in cucumber (Cucumis sativus L.). Ecotoxicol Environ Saf. 2016;133:114–26.PubMedGoogle Scholar
  200. 200.
    Usami M, Mitsunaga K, Nakazawa K, Doi O. Proteomic analysis of selenium embryotoxicity in cultured postimplantation rat embryos. Birth Defects Res B Dev Reprod Toxicol. 2008;83:80–96.PubMedGoogle Scholar
  201. 201.
    Rayman MP, Infante HG, Sargent M. Food-chain selenium and human health: spotlight on speciation. Br J Nutr. 2008;100:238–53.PubMedGoogle Scholar
  202. 202.
    Frisbie SH, Mitchell EJ, Sarkar B. Urgent need to reevaluate the latest World Health Organization guidelines for toxic inorganic substances in drinking water. Environ Health. 2015;14:63.PubMedPubMedCentralGoogle Scholar
  203. 203.
    Genthe B, Kapwata T, Le Roux W, Chamier J, Wright CY. The reach of human health risks associated with metals/metalloids in water and vegetables along a contaminated river catchment: South Africa and Mozambique. Chemosphere. 2018;199:1–9.PubMedGoogle Scholar
  204. 204.
    Aakre I, Henjum S, Folven Gjengedal EL, Risa Haugstad C, Vollset M, Moubarak K, et al. Trace element concentrations in drinking water and urine among Saharawi women and young children. Toxics. 2018;6:E40.PubMedGoogle Scholar
  205. 205.
    Cui Z, Huang J, Peng Q, Yu D, Wang S, Liang D. Risk assessment for human health in a seleniferous area, Shuang’an, China. Environ Sci Pollut Res Int. 2017;24:17701–10.PubMedGoogle Scholar
  206. 206.
    Golubkina N, Erdenetsogt E, Tarmaeva I, Brown O, Tsegmed S. Selenium and drinking water quality indicators in Mongolia. Environ Sci Pollut Res Int. 2018;25:28619–27.Google Scholar
  207. 207.
    Hoover JH, Coker E, Barney Y, Shuey C, Lewis J. Spatial clustering of metal and metalloid mixtures in unregulated water sources on the Navajo Nation—Arizona, New Mexico, and Utah, USA. Sci Total Environ. 2018;633:1667–78.PubMedGoogle Scholar
  208. 208.
    Munyangane P, Mouri H, Kramers J. Assessment of some potential harmful trace elements (PHTEs) in the borehole water of Greater Giyani, Limpopo Province, South Africa: possible implications for human health. Environ Geochem Health. 2017;39:1201–19.PubMedGoogle Scholar
  209. 209.
    Stillings LL Selenium. In: Schulz KJ, De Young JH, Jr, Seal RR, II, Bradley DC (eds) Critical mineral resources of the United States—economic and environmental geology and prospect for future supply. US Geological Survey Professional Paper 1802, Reston, p 797. 2017.Google Scholar
  210. 210.
    De Benedetti S, Lucchini G, Del Bo C, Deon V, Marocchi A, Penco S, et al. Blood trace metals in a sporadic amyotrophic lateral sclerosis geographical cluster. Biometals. 2017;30:355–65.PubMedGoogle Scholar
  211. 211.
    Ellwanger JH, Franke SI, Bordin DL, Pra D, Henriques JA. Biological functions of selenium and its potential influence on Parkinson’s disease. An Acad Bras Cienc. 2016;88:1655–74.PubMedGoogle Scholar
  212. 212.
    Morris JS, Crane SB. Selenium toxicity from a misformulated dietary supplement, adverse health effects, and the temporal response in the nail biologic monitor. Nutrients. 2013;5:1024–57.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Pavlidou E, Salpietro V, Phadke R, Hargreaves IP, Batten L, McElreavy K, et al. Pontocerebellar hypoplasia type 2D and optic nerve atrophy further expand the spectrum associated with selenoprotein biosynthesis deficiency. Eur J Paediatr Neurol. 2016;20:483–8.PubMedGoogle Scholar
  214. 214.
    van Dijk T, Vermeij JD, van Koningsbruggen S, Lakeman P, Baas F, Poll-The BT. A SEPSECS mutation in a 23-year-old woman with microcephaly and progressive cerebellar ataxia. J Inherit Metab Dis. 2018;41:897–8Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Marco Vinceti
    • 1
    • 2
    Email author
  • Tommaso Filippini
    • 1
  • Lauren A. Wise
    • 2
  1. 1.CREAGEN Research Center for Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.Department of EpidemiologyBoston University School of Public HealthBostonUSA

Personalised recommendations