Environmental Exposures and Neuropsychiatric Disorders: What Role Does the Gut–Immune–Brain Axis Play?

Mechanisms of Toxicity (CJ Mattingly and A Planchart, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Mechanisms of Toxicity

Abstract

Purpose of Review

Evidence is growing that environmental exposures—including xenobiotics as well as microbes—play a role in the pathogenesis of many neuropsychiatric disorders. Underlying mechanisms are likely to be complex, involving the developmentally sensitive interplay of genetic/epigenetic, detoxification, and immune factors. Here, we review evidence supporting a role for environmental factors and disrupted gut–immune–brain axis function in some neuropsychiatric conditions.

Recent Findings

Studies suggesting the involvement of an altered microbiome in triggering CNS-directed autoimmunity and neuropsychiatric disturbances are presented as an intriguing example of the varied mechanisms by which environmentally induced gut–immune–brain axis dysfunction may contribute to adverse brain outcomes.

Summary

The gut–immune–brain axis is a burgeoning frontier for investigation of neuropsychiatric illness. Future translational research to define individual responses to exogenous exposures in terms of microbiome-dependent skew of the metabolome, immunity, and brain function may serve as a lens for illumination of pathways involved in the development of CNS disease and fuel discovery of novel interventions.

Keywords

Gut–immune–brain axis Immunity Autoantibodies Microbiome Neuropsychiatric disorders 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not include any new studies performed by any of the authors using human or animal subjects.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Heinzen EL, Neale BM, Traynelis SF, Allen AS, Goldstein DB. The genetics of neuropsychiatric diseases: looking in and beyond the exome. Annu Rev Neurosci. 2015;38:47–68.PubMedCrossRefGoogle Scholar
  2. 2.
    Dick DM, Riley B, Kendler KS. Nature and nurture in neuropsychiatric genetics: where do we stand? Dialogues Clin Neurosci. 2010;12(1):7–23.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Thompson L, Kemp J, Wilson P, Pritchett R, Minnis H, Toms-Whittle L, et al. What have birth cohort studies asked about genetic, pre- and perinatal exposures and child and adolescent onset mental health outcomes? A systematic review. Eur Child Adolesc Psychiatry. 2010;19(1):1–15.PubMedCrossRefGoogle Scholar
  4. 4.
    Simanek AM, Meier HC. Association between prenatal exposure to maternal infection and offspring mood disorders: a review of the literature. Curr Probl Pediatr Adolesc Health Care. 2015;45(11):325–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Bonde JP. Psychosocial factors at work and risk of depression: a systematic review of the epidemiological evidence. Occup Environ Med. 2008;65(7):438–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Jaga K, Dharmani C. The interrelation between organophosphate toxicity and the epidemiology of depression and suicide. Rev Environ Health. 2007;22(1):57–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Triebig G, Barocka A, Erbguth F, Holl R, Lang C, Lehrl S, et al. Neurotoxicity of solvent mixtures in spray painters. II. Neurologic, psychiatric, psychological, and neuroradiologic findings. Int Arch Occup Environ Health. 1992;64(5):361–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Huang YC, Tsuang W. Health effects associated with faulty application of spray polyurethane foam in residential homes. Environ Res. 2014;134:295–300.PubMedCrossRefGoogle Scholar
  9. 9.
    Kraneveld AD, de Theije CG, van Heesch F, Borre Y, de Kivit S, Olivier B, et al. The neuro-immune axis: prospect for novel treatments for mental disorders. Basic Clin Pharmacol Toxicol. 2014;114(1):128–36.PubMedCrossRefGoogle Scholar
  10. 10.
    Sherwin E, Rea K, Dinan TG, Cryan JF. A gut (microbiome) feeling about the brain. Curr Opin Gastroenterol. 2016;32(2):96–102.PubMedCrossRefGoogle Scholar
  11. 11.
    Yoo BB, Mazmanian SK. The enteric network: Interactions between the immune and nervous systems of the gut. Immunity. 2017;46(6):910–26.PubMedCrossRefGoogle Scholar
  12. 12.
    Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci. 2017;74(20):3769–87.PubMedCrossRefGoogle Scholar
  13. 13.
    Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7.CrossRefGoogle Scholar
  14. 14.
    Herbert M. R.. Clinical implications of environmental toxicology for children’s neurodevelopment in autism. Future Neurol. 2007;2:167–71.CrossRefGoogle Scholar
  15. 15.
    Herbert MR, Anderson MP. An expanding spectrum of autism models: from fixed developmental defects to reversible functional impairments. In: Zimmerman AW, editor. Autism. Current Clinical Neurology. Totowa, NJ: Humana Press; 2008. p. 429–463.CrossRefGoogle Scholar
  16. 16.
    Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017;179:223–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Stojanovic A, Martorell L, Montalvo I, Ortega L, Monseny R, Vilella E, et al. Increased serum interleukin-6 levels in early stages of psychosis: associations with at-risk mental states and the severity of psychotic symptoms. Psychoneuroendocrinology. 2014;41:23–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Falcone T, Carlton E, Lee C, Janigro M, Fazio V, Forcen FE, et al. Does systemic inflammation play a role in pediatric psychosis? Clin Schizophr Relat Psychoses. 2015;9(2):65–78B.PubMedCrossRefGoogle Scholar
  19. 19.
    Upthegrove R, Manzanares-Teson N, Barnes NM. Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res. 2014;155(1–3):101–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E. Inflammatory cytokine alterations in schizophrenia: A systematic quantitative review. Biol Psychiatry. 2008;63(8):801–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Rosenblat JD, McIntyre RS. Bipolar disorder and inflammation. Psychiatr Clin N Am. 2016;39(1):125–37.CrossRefGoogle Scholar
  22. 22.
    Gill JM, Saligan L, Woods S, Page G. PTSD is associated with an excess of inflammatory immune activities. Perspect Psychiatr Care. 2009;45(4):262–77.PubMedCrossRefGoogle Scholar
  23. 23.
    Baker DG, Ekhator NN, Kasckow JW, Hill KK, Zoumakis E, Dashevsky BA, et al. Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomodulation. 2001;9(4):209–17.PubMedCrossRefGoogle Scholar
  24. 24.
    Akintunde ME, Rose M, Krakowiak P, Heuer L, Ashwood P, Hansen R, et al. Increased production of IL-17 in children with autism spectrum disorders and co-morbid asthma. J Neuroimmunol. 2015;286:33–41.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Brambilla F, Monteleone P, Maj M. Interleukin-1beta and tumor necrosis factor-alpha in children with major depressive disorder or dysthymia. J Affect Disord. 2004;78(3):273–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Goldstein BI, Lotrich F, Axelson DA, Gill MK, Hower H, Goldstein TR, et al. Inflammatory markers among adolescents and young adults with bipolar spectrum disorders. J Clin Psychiatry. 2015;76(11):1556–63.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Khandaker GM, Pearson RM, Zammit S, Lewis G, Jones PB. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiatry. 2014;71(10):1121–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hornig M, Bresnahan MA, Che X, Schultz AF, Ukaigwe JE, Eddy ML, et al. Prenatal fever and autism risk. Mol Psychiatry. 2017.  https://doi.org/10.1038/mp.2017.119.
  29. 29.
    Brown AS, Schaefer CA, Quesenberry CP Jr, Liu L, Babulas VP, Susser ES. Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry. 2005;162(4):767–73.PubMedCrossRefGoogle Scholar
  30. 30.
    Brown AS. Prenatal infection as a risk factor for schizophrenia. Schizophr Bull. 2006;32(2):200–2.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Brown AS, Hooton J, Schaefer CA, Zhang H, Petkova E, Babulas V, et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry. 2004;161(5):889–95.PubMedCrossRefGoogle Scholar
  32. 32.
    Goldstein JM, Cherkerzian S, Seidman LJ, Donatelli JA, Remington AG, Tsuang MT, et al. Prenatal maternal immune disruption and sex-dependent risk for psychoses. Psychol Med. 2014;44(15):3249–61.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Parboosing R, Bao Y, Shen L, Schaefer CA, Brown AS. Gestational influenza and bipolar disorder in adult offspring. JAMA Psychiatry. 2013;70(7):677–85.PubMedCrossRefGoogle Scholar
  34. 34.
    Zerbo O, Qian Y, Yoshida C, Grether JK, Van de Water J, Croen LA. Maternal infection during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2015;45(12):4015–25.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Mahic M, Che X, Susser E, Levin B, Reichborn-Kjennerud T, Magnus P, et al. Epidemiological and serological investigation into the role of gestational maternal influenza virus infection and autism spectrum disorders. mSphere. 2017.  https://doi.org/10.1128/mSphere.00159-17.
  36. 36.
    Sun Y, Vestergaard M, Christensen J, Nahmias AJ, Olsen J. Prenatal exposure to maternal infections and epilepsy in childhood: a population-based cohort study. Pediatrics. 2008;121(5):e1100–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Ahlin K, Himmelmann K, Hagberg G, Kacerovsky M, Cobo T, Wennerholm UB, et al. Cerebral palsy and perinatal infection in children born at term. Obstet Gynecol. 2013;122(1):41–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Hornig M. The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness. Curr Opin Rheumatol. 2013;25(4):488–795.PubMedCrossRefGoogle Scholar
  39. 39.
    McCusker RH, Kelley KW. Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol. 2013;216(Pt 1):84–98.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol. 2014;10(11):643–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Muller N, Riedel M, Gruber R, Ackenheil M, Schwarz MJ. The immune system and schizophrenia. An integrative view. Ann N Y Acad Sci. 2000;917:456–67.PubMedCrossRefGoogle Scholar
  42. 42.
    Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27(40):10695–702.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Samuelsson AM, Jennische E, Hansson HA, Holmang A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. Am J Phys Regul Integr Comp Phys. 2006;290(5):R1345–56.Google Scholar
  45. 45.
    Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351(6276):933–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis. 2002;35(Suppl 1):S6–S16.PubMedCrossRefGoogle Scholar
  47. 47.
    Parracho HM, Bingham MO, Gibson GR, McCartney AL. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol. 2005;54(Pt 10):987–91.PubMedCrossRefGoogle Scholar
  48. 48.
    Persico AM, Napolioni V. Urinary p-cresol in autism spectrum disorder. Neurotoxicol Teratol. 2013;36:82–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Williams BL, Hornig M, Parekh T, Lipkin WI. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio. 2012.  https://doi.org/10.1128/mBio.00261-11.
  50. 50.
    Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol Autism. 2013;4(1):42.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Finegold SM. Desulfovibrio species are potentially important in regressive autism. Med Hypotheses. 2011;77(2):270–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Evans SJ, Bassis CM, Hein R, Assari S, Flowers SA, Kelly MB, et al. The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res. 2017;87:23–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Schwarz E, Maukonen J, Hyytiainen T, Kieseppa T, Oresic M, Sabunciyan S, et al. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr Res. 2017.  https://doi.org/10.1016/j.schres.2017.04.017.
  54. 54.
    Castro-Nallar E, Bendall ML, Perez-Losada M, Sabuncyan S, Severance EG, Dickerson FB, et al. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. Peer J. 2015;3:e1140.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Yolken RH, Severance EG, Sabunciyan S, Gressitt KL, Chen O, Stallings C, et al. Metagenomic sequencing indicates that the oropharyngeal phageome of individuals with schizophrenia differs from that of controls. Schizophr Bull. 2015;41(5):1153–61.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Severance EG, Gressitt KL, Stallings CR, Katsafanas E, Schweinfurth LA, Savage CL, et al. Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder. NPJ Schizophr. 2016;2:16018.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord. 2016;202:254–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94.PubMedCrossRefGoogle Scholar
  59. 59.
    Slyepchenko A, Maes M, Jacka FN, Kohler CA, Barichello T, McIntyre RS, et al. Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom. 2017;86(1):31–46.PubMedCrossRefGoogle Scholar
  60. 60.
    Giloteaux L, Goodrich JK, Walters WA, Levine SM, Ley RE, Hanson MR. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome. 2016;4(1):30.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Nagy-Szakal D, Williams BL, Mishra N, Che X, Lee B, Bateman L, et al. Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome. 2017;5(1):44.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Shukla SK, Cook D, Meyer J, Vernon SD, Le T, Clevidence D, et al. Changes in gut and plasma microbiome following exercise challenge in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). PLoS One. 2015;10(12):e0145453.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Morris G, Berk M, Carvalho AF, Caso JR, Sanz Y, Maes M. The role of microbiota and intestinal permeability in the pathophysiology of autoimmune and neuroimmune processes with an emphasis on inflammatory bowel disease type 1 diabetes and chronic fatigue syndrome. Curr Pharm Des. 2016;22(40):6058–75.PubMedCrossRefGoogle Scholar
  64. 64.
    Partty A, Kalliomaki M, Wacklin P, Salminen S, Isolauri E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr Res. 2015;77(6):823–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Tsai MC, Lin HK, Lin CH, Fu LS. Prevalence of attention deficit/hyperactivity disorder in pediatric allergic rhinitis: a nationwide population-based study. Allergy Asthma Proc. 2011;32(6):41–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Meldrum SJ, D'Vaz N, Dunstan JA, Mori TA, Hird K, Simmer K, et al. Allergic disease in the first year of life is associated with differences in subsequent neurodevelopment and behaviour. Early Hum Dev. 2012;88(7):567–73.PubMedCrossRefGoogle Scholar
  67. 67.
    Shelton KH, Collishaw S, Rice FJ, Harold GT, Thapar A. Using a genetically informative design to examine the relationship between breastfeeding and childhood conduct problems. Eur Child Adolesc Psychiatry. 2011;20(11–12):571–9.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Dickerson FB, Stallings C, Origoni A, Katsafanas E, Savage CL, Schweinfurth LA, et al. Effect of probiotic supplementation on schizophrenia symptoms and association with gastrointestinal functioning: a randomized, placebo-controlled trial. Prim Care Companion CNS Disord. 2014.  https://doi.org/10.4088/PCC.13m01579.
  69. 69.
    Severance EG, Gressitt KL, Stallings CR, Katsafanas E, Schweinfurth LA, Savage CLG, et al. Probiotic normalization of Candida albicans in schizophrenia: a randomized, placebo-controlled, longitudinal pilot study. Brain Behav Immun. 2017;62:41–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Huang R, Wang K, Hu J. Effect of probiotics on depression: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2016.  https://doi.org/10.3390/nu8080483.
  71. 71.
    Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37(11):1885–95.PubMedCrossRefGoogle Scholar
  72. 72.
    ThyagaRajan S, Priyanka HP. Bidirectional communication between the neuroendocrine system and the immune system: relevance to health and diseases. Ann Neurosci. 2012;19(1):40–6.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Franco R, Pacheco R, Lluis C, Ahern GP, O'Connell PJ. The emergence of neurotransmitters as immune modulators. Trends Immunol. 2007;28(9):400–7.PubMedCrossRefGoogle Scholar
  74. 74.
    •• Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392. This is an integral review exploring fundamental key concepts of the gut-immune-brain axis. PubMedPubMedCentralGoogle Scholar
  75. 75.
    Borre YE, O'Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014;20(9):509–18.PubMedCrossRefGoogle Scholar
  76. 76.
    Satokari R, Gronroos T, Laitinen K, Salminen S, Isolauri E. Bifidobacterium and lactobacillus DNA in the human placenta. Lett Appl Microbiol. 2009;48(1):8–12.PubMedCrossRefGoogle Scholar
  77. 77.
    Prince AL, Chu DM, Seferovic MD, Antony KM, Ma J, Aagaard KM. The perinatal microbiome and pregnancy: moving beyond the vaginal microbiome. Cold Spring Harbor Perspect Med. 2015.  https://doi.org/10.1101/cshperspect.a023051.
  78. 78.
    Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10(2):131–44.PubMedCrossRefGoogle Scholar
  81. 81.
    Engel AL, Holt GE, Lu H. The pharmacokinetics of toll-like receptor agonists and the impact on the immune system. Expert Rev Clin Pharmacol. 2011;4(2):275–89.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem. 2009;57(11):1013–23.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Krenkel O, Mossanen JC, Tacke F. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surg Nutr. 2014;3(6):331–43.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Cai B, Wang M, Zhu X, Xu J, Zheng W, Zhang Y, et al. The fab fragment of a humanized anti-toll like receptor 4 (TLR4) monoclonal antibody reduces the lipopolysaccharide response via TLR4 in mouse macrophage. Int J Mol Sci. 2015;16(10):25502–15.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Maes M, Kubera M, Leunis JC. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol Lett. 2008;29(1):117–24.PubMedGoogle Scholar
  86. 86.
    Maes M, Coucke F, Leunis JC. Normalization of the increased translocation of endotoxin from gram negative enterobacteria (leaky gut) is accompanied by a remission of chronic fatigue syndrome. Neuroendocrinol Lett. 2007;28(6):739–44.PubMedGoogle Scholar
  87. 87.
    Severance EG, Gressitt KL, Stallings CR, Origoni AE, Khushalani S, Leweke FM, et al. Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophr Res. 2013;148(1–3):130–7.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zhan X, Stamova B, Jin LW, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology. 2016;87(22):2324–32.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zhao Y, Cong L, Jaber V, Lukiw WJ. Microbiome-derived lipopolysaccharide enriched in the perinuclear region of Alzheimer’s disease brain. Front Immunol. 2017;8:1064.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K, et al. Intestinal Dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One. 2015;10(11):e0142164.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011;23(12):1132–9.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Isolauri E, Majamaa H, Arvola T, Rantala I, Virtanen E, Arvilommi H. Lactobacillus casei strain GG reverses increased intestinal permeability induced by cow milk in suckling rats. Gastroenterology. 1993;105(6):1643–50.PubMedCrossRefGoogle Scholar
  93. 93.
    Hummel S, Veltman K, Cichon C, Sonnenborn U, Schmidt MA. Differential targeting of the E-cadherin/beta-catenin complex by gram-positive probiotic lactobacilli improves epithelial barrier function. Appl Environ Microbiol. 2012;78(4):1140–7.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, et al. The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol Neurobiol. 2017;54(6):4432–51.PubMedCrossRefGoogle Scholar
  96. 96.
    Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Mudd AT, Berding K, Wang M, Donovan SM, Dilger RN. Serum cortisol mediates the relationship between fecal Ruminococcus and brain N-acetylaspartate in the young pig. Gut Microbes. 2017:1–12.Google Scholar
  98. 98.
    Aoki Y, Kasai K, Yamasue H. Age-related change in brain metabolite abnormalities in autism: a meta-analysis of proton magnetic resonance spectroscopy studies. Transl Psychiatry. 2012;2:e69.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Maqsood R, Stone TW. The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochem Res. 2016;41(11):2819–35.PubMedCrossRefGoogle Scholar
  100. 100.
    Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun. 2017;60:1–12.PubMedCrossRefGoogle Scholar
  101. 101.
    Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Dileepan T, Smith ED, Knowland D, Hsu M, Platt M, Bittner-Eddy P, et al. Group a streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells. J Clin Invest. 2016;126(1):303–17.PubMedCrossRefGoogle Scholar
  103. 103.
    Yaddanapudi K, Hornig M, Serge R, De Miranda J, Baghban A, Villar G, et al. Passive transfer of streptococcus-induced antibodies reproduces behavioral disturbances in a mouse model of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection. Mol Psychiatry. 2010;15(7):712–26.PubMedCrossRefGoogle Scholar
  104. 104.
    Domenici E, Wille DR, Tozzi F, Prokopenko I, Miller S, McKeown A, et al. Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS One. 2010;5(2):e9166.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Yamazaki Y, Kanekiyo T. Blood-brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int J Mol Sci. 2017.  https://doi.org/10.3390/ijms18091965.
  106. 106.
    Walsh MT, Ryan M, Hillmann A, Condren R, Kenny D, Dinan T, et al. Elevated expression of integrin alpha(IIb) beta(IIIa) in drug-naive, first-episode schizophrenic patients. Biol Psychiatry. 2002;52(9):874–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Ye L, Sun Z, Xie L, Liu S, Ju G, Shi J, et al. Further study of a genetic association between the CLDN5 locus and schizophrenia. Schizophr Res. 2005;75(1):139–41.PubMedCrossRefGoogle Scholar
  108. 108.
    Sun ZY, Wei J, Xie L, Shen Y, Liu SZ, Ju GZ, et al. The CLDN5 locus may be involved in the vulnerability to schizophrenia. Eur Psychiatry. 2004;19(6):354–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Schumberg K, Polyakova M, Steiner J, Schroeter ML. Serum S100B is related to illness duration and clinical symptoms in schizophrenia-a meta-regression analysis. Front Cell Neurosci. 2016;10:46.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Fiorentino M, Sapone A, Senger S, Camhi SS, Kadzielski SM, Buie TM, et al. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism. 2016;7:49.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Chassaing B, Vijay-Kumar M, Gewirtz AT. How diet can impact gut microbiota to promote or endanger health. Curr Opin Gastroenterol. 2017;33(6):417–21.PubMedCrossRefGoogle Scholar
  112. 112.
    Selhub EM, Logan AC, Bested AC. Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J Physiol Anthropol. 2014;33:2.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144(7):1394–401. 401 e1–4PubMedCrossRefGoogle Scholar
  114. 114.
    •• Koppel N, Maini Rekdal V, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017.  https://doi.org/10.1126/science.aag2770. This is an excellent review that details the relationship and biochemistry between xenobiotics and the metabolism of gut microbiota.
  115. 115.
    McGeachy MJ, McSorley SJ. Microbial-induced Th17: superhero or supervillain? J Immunol. 2012;189(7):3285–91.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Fetissov SO, Hallman J, Oreland L, Af Klinteberg B, Grenback E, Hulting AL, et al. Autoantibodies against alpha-MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients. Proc Natl Acad Sci U S A. 2002;99(26):17155–60.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    •• Breton J, Legrand R, Akkermann K, Jarv A, Harro J, Dechelotte P, et al. Elevated plasma concentrations of bacterial ClpB protein in patients with eating disorders. Int J Eat Disord. 2016;49(8):805–8. A provocative study which highlights the potential role of the gut-immune-brain axis in eating disorders. PubMedCrossRefGoogle Scholar
  118. 118.
    Fetissov SO, Dechelotte P. The putative role of neuropeptide autoantibodies in anorexia nervosa. Curr Opin Clin Nutr Metab Care. 2008;11(4):428–34.PubMedCrossRefGoogle Scholar
  119. 119.
    Vincenzi B, O'Toole J, Lask B. PANDAS and anorexia nervosa--a spotters' guide: suggestions for medical assessment. Eur Eat Disord Rev. 2010;18(2):116–23.PubMedCrossRefGoogle Scholar
  120. 120.
    Frankovich J, Thienemann M, Pearlstein J, Crable A, Brown K, Chang K. Multidisciplinary clinic dedicated to treating youth with pediatric acute-onset neuropsychiatric syndrome: presenting characteristics of the first 47 consecutive patients. J Child Adolesc Psychopharmacol. 2015;25(1):38–47.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Orefici G, Cardona F, Cox CJ, Cunningham MW. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes: Basic biology to clinical manifestations. Oklahoma City: University of Oklahoma Health Sciences Center; 2016. p. 1–43.Google Scholar
  122. 122.
    Toufexis MD, Hommer R, Gerardi DM, Grant P, Rothschild L, D'Souza P, et al. Disordered eating and food restrictions in children with PANDAS/PANS. J Child Adolesc Psychopharmacol. 2015;25(1):48–56.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Gable MS, Gavali S, Radner A, Tilley DH, Lee B, Dyner L, et al. Anti-NMDA receptor encephalitis: report of ten cases and comparison with viral encephalitis. Eur J Clin Microbiol Infect Dis. 2009;28(12):1421–9.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Kayser MS, Dalmau J. Anti-NMDA receptor encephalitis, autoimmunity, and psychosis. Schizophr Res. 2016;176(1):36–40.PubMedCrossRefGoogle Scholar
  125. 125.
    Pearlman DM, Najjar S. Meta-analysis of the association between N-methyl-d-aspartate receptor antibodies and schizophrenia, schizoaffective disorder, bipolar disorder, and major depressive disorder. Schizophr Res. 2014;157(1–3):249–58.PubMedCrossRefGoogle Scholar
  126. 126.
    Pathmanandavel K, Starling J, Merheb V, Ramanathan S, Sinmaz N, Dale RC, et al. Antibodies to surface dopamine-2 receptor and N-methyl-D-aspartate receptor in the first episode of acute psychosis in children. Biol Psychiatry. 2015;77(6):537–47.PubMedCrossRefGoogle Scholar
  127. 127.
    Tanaka S, Matsunaga H, Kimura M, Tatsumi K, Hidaka Y, Takano T, et al. Autoantibodies against four kinds of neurotransmitter receptors in psychiatric disorders. J Neuroimmunol. 2003;141(1–2):155–64.PubMedCrossRefGoogle Scholar
  128. 128.
    Singh VK, Singh EA, Warren RP. Hyperserotoninemia and serotonin receptor antibodies in children with autism but not mental retardation. Biol Psychiatry. 1997;41(6):753–5.PubMedCrossRefGoogle Scholar
  129. 129.
    Bashir S, Al-Ayadhi L. Endothelial antibody levels in the sera of children with autism spectrum disorders. J Chin Med Assoc. 2015;78(7):414–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Rout UK, Mungan NK, Dhossche DM. Presence of GAD65 autoantibodies in the serum of children with autism or ADHD. Eur Child Adolesc Psychiatry. 2012;21(3):141–7.PubMedCrossRefGoogle Scholar
  131. 131.
    AlHakeem AS, Mekki MS, AlShahwan SM, Tabarki BM. Acute psychosis in children: do not miss immune-mediated causes. Neurosciences (Riyadh). 2016;21(3):252–5.CrossRefGoogle Scholar
  132. 132.
    Moura M, Silva-Dos-Santos A, Afonso J, Talina M. First-episode psychosis in a 15 year-old female with clinical presentation of anti-NMDA receptor encephalitis: a case report and review of the literature. BMC Res Notes. 2016;9:374.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7(12):1091–8.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Swedo SE, Frankovich J, Murphy TK. Overview of treatment of pediatric acute-onset neuropsychiatric syndrome. J Child Adolesc Psychopharmacol. 2017;27(7):562–5.PubMedGoogle Scholar
  135. 135.
    Severance EG, Alaedini A, Yang S, Halling M, Gressitt KL, Stallings CR, et al. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophr Res. 2012;138(1):48–53.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Cascella NG, Kryszak D, Bhatti B, Gregory P, Kelly DL, Mc Evoy JP, et al. Prevalence of celiac disease and gluten sensitivity in the United States clinical antipsychotic trials of intervention effectiveness study population. Schizophr Bull. 2011;37(1):94–100.PubMedCrossRefGoogle Scholar
  137. 137.
    Jokanovic M, Kosanovic M. Neurotoxic effects in patients poisoned with organophosphorus pesticides. Environ Toxicol Pharmacol. 2010;29(3):195–201.PubMedCrossRefGoogle Scholar
  138. 138.
    Perera FP, Wheelock K, Wang Y, Tang D, Margolis AE, Badia G, et al. Combined effects of prenatal exposure to polycyclic aromatic hydrocarbons and material hardship on child ADHD behavior problems. Environ Res. 2018;160:506–13.PubMedCrossRefGoogle Scholar
  139. 139.
    Fluegge KR, Nishioka M, Wilkins JR 3rd. Effects of simultaneous prenatal exposures to organophosphate and synthetic pyrethroid insecticides on infant neurodevelopment at three months of age. J Environ Toxicol Public Health. 2016;1:60–73.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 2015;9:124.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roque P. Neurotoxicants are in the air: convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. BioMed Research Int. 2014;2014:736385.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PsychiatryColumbia University Medical CenterNew YorkUSA
  2. 2.Center for Infection and ImmunityColumbia University Mailman School of Public HealthNew YorkUSA
  3. 3.Department of EpidemiologyColumbia University Mailman School of Public HealthNew YorkUSA

Personalised recommendations