Current Environmental Health Reports

, Volume 4, Issue 2, pp 166–179 | Cite as

Outdoor Ambient Air Pollution and Neurodegenerative Diseases: the Neuroinflammation Hypothesis

  • Richard L. Jayaraj
  • Eric A. Rodriguez
  • Yi Wang
  • Michelle L. Block
Mechanisms of Toxicity (JR Richardson, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Mechanisms of Toxicity


Purpose of Review

Accumulating research indicates that ambient outdoor air pollution impacts the brain and may affect neurodegenerative diseases, yet the potential underlying mechanisms are poorly understood.

Recent Findings

The neuroinflammation hypothesis holds that elevation of cytokines and reactive oxygen species in the brain mediates the deleterious effects of urban air pollution on the central nervous system (CNS). Studies in human and animal research document that neuroinflammation occurs in response to several inhaled pollutants. Microglia are a prominent source of cytokines and reactive oxygen species in the brain, implicated in the progressive neuron damage in diverse neurodegenerative diseases, and activated by inhaled components of urban air pollution through both direct and indirect pathways. The MAC1-NOX2 pathway has been identified as a mechanism through which microglia respond to different forms of air pollution, suggesting a potential common deleterious pathway.


Multiple direct and indirect pathways in response to air pollution exposure likely interact in concert to exert CNS effects.


Microglia Neuroinflammation Air pollution Neurodegenerative disease 



This work was supported by the National Institute of Environmental Health Sciences/the National Institute of Health [Grant number 1R01ES016951].

Compliance with Ethical Standards

Conflict of Interest

Richard L. Jayaraj, Eric A. Rodriguez, Yi Wang, and Michelle L. Block declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Calderon-Garciduenas L, Maronpot RR, Torres-Jardon R, Henriquez-Roldan C, Schoonhoven R, Acuna-Ayala H, et al. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxicol Pathol. 2003;31(5):524–38.PubMedCrossRefGoogle Scholar
  2. 2.
    Calderon-Garciduenas L, Azzarelli B, Acuna H, Garcia R, Gambling TM, Osnaya N, et al. Air pollution and brain damage. Toxicol Pathol. 2002;30(3):373–89.PubMedCrossRefGoogle Scholar
  3. 3.
    • Calderon-Garciduenas L, Reed W, Maronpot RR, Henriquez-Roldan C, Delgado-Chavez R, Calderon-Garciduenas A, et al. Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol. 2004;32(6):650–8. This is a hallmark paper from a small case study that was the first to suggest air pollution exposure may be linked to human Alzhiemer’s disease-like neuropathology and central nervous system damage. Since this time, many animal model experimental research and epidemiology studies have further investigated this premise, work which now comprises an entire field. Google Scholar
  4. 4.
    Calderon-Garciduenas L, Leray E, Heydarpour P, Torres-Jardon R, Reis J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: the clinical impact on children and beyond. Rev Neurol (Paris). 2016;172(1):69–80.CrossRefGoogle Scholar
  5. 5.
    Block ML, Calderon-Garciduenas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009;32(9):506–16.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kurt OK, Zhang J, Pinkerton KE. Pulmonary health effects of air pollution. Curr Opin Pulm Med. 2016;22(2):138–43.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Akimoto H. Global air quality and pollution. Science. 2003;302(5651):1716–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–60.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Stanek LW, Brown JS, Stanek J, Gift J, Costa DL. Air pollution toxicology—a brief review of the role of the science in shaping the current understanding of air pollution health risks. Toxicol Sci. 2011;120(Suppl 1):S8–27.PubMedCrossRefGoogle Scholar
  10. 10.
    Cui P, Huang YB, Han JL, Song FJ, Chen KX. Ambient particulate matter and lung cancer incidence and mortality: a meta-analysis of prospective studies. Eur J Pub Health. 2015;25(2):324–9.CrossRefGoogle Scholar
  11. 11.
    Kaufman JD, Adar SD, Barr RG, Budoff M, Burke GL, Curl CL, et al. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study. Lancet. 2016;388(10045):696–704.PubMedCrossRefGoogle Scholar
  12. 12.
    Bravo MA, Anthopolos R, Bell ML, Miranda ML. Racial isolation and exposure to airborne particulate matter and ozone in understudied US populations: environmental justice applications of downscaled numerical model output. Environ Int. 2016;92-93:247–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang CC, Tu YF, Yu ZL, Lu RZ. PM2.5 and cardiovascular diseases in the elderly: an overview. Int J Environ Res Public Health. 2015;12(7):8187–97.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Giannadaki D, Lelieveld J, Pozzer A. Implementing the US air quality standard for PM2.5 worldwide can prevent millions of premature deaths per year. Environmental Health. 2016;15.Google Scholar
  15. 15.
    Craig L, Brook JR, Chiotti Q, Croes B, Gower S, Hedley A, et al. Air pollution and public health: a guidance document for risk managers. J Toxicol Environ Health A. 2008;71(9–10):588–698.PubMedCrossRefGoogle Scholar
  16. 16.
    Muhlfeld C, Rothen-Rutishauser B, Blank F, Vanhecke D, Ochs M, Gehr P. Interactions of nanoparticles with pulmonary structures and cellular responses. Am J Physiol Lung Cell Mol Physiol. 2008;294(5):L817–29.PubMedCrossRefGoogle Scholar
  17. 17.
    Valavanidis A, Fiotakis K, Vlachogianni T. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2008;26(4):339–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Rothen-Rutishauser B, Mueller L, Blank F, Brandenberger C, Muehlfeld C, Gehr P. A newly developed in vitro model of the human epithelial airway barrier to study the toxic potential of nanoparticles. ALTEX. 2008;25(3):191–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Kioumourtzoglou MA, Schwartz JD, Weisskopf MG, Melly SJ, Wang Y, Dominici F, et al. Long-term PM2.5 exposure and neurological hospital admissions in the northeastern United States. Environ Health Perspect. 2016;124(1):23–9.PubMedGoogle Scholar
  20. 20.
    Jung CR, Lin YT, Hwang BF. Ozone, particulate matter, and newly diagnosed Alzheimer’s disease: a population-based cohort study in taiwan. J Alzheimers Dis. 2015;44(2):573–84.PubMedGoogle Scholar
  21. 21.
    Ailshire JA, Clarke P. Fine particulate matter air pollution and cognitive function among US older adults. J Gerontol B-Psychol. 2015;70(2):322–8.CrossRefGoogle Scholar
  22. 22.
    Ailshire JA, Crimmins EM. Fine particulate matter air pollution and cognitive function among older US adults. Am J Epidemiol. 2014;180(4):359–66.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gatto NM, Henderson VW, Hodis HN, St John JA, Lurmann F, Chen JC, et al. Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles. Neurotoxicology. 2014;40:1–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Schikowski T, Vossoughi M, Vierkotter A, Schulte T, Teichert T, Sugiri D, et al. Association of air pollution with cognitive functions and its modification by APOE gene variants in elderly women. Environ Res. 2015;142:10–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Tonne C, Elbaz A, Beevers S, Singh-Manoux A. Traffic-related air pollution in relation to cognitive function in older adults. Epidemiology. 2014;25(5):674–81.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Weuve J, Puett RC, Schwartz J, Yanosky JD, Laden F, Grodstein F. Exposure to particulate air pollution and cognitive decline in older women. Arch Intern Med. 2012;172(3):219–27.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Loop MS, Kent ST, Al-Hamdan MZ, Crosson WL, Estes SM, Estes Jr MG, et al. Fine particulate matter and incident cognitive impairment in the REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort. PLoS One. 2013;8(9):e75001.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chen JC, Wang X, Wellenius GA, Serre ML, Driscoll I, Casanova R, et al. Ambient air pollution and neurotoxicity on brain structure: evidence from women’s health initiative memory study. Ann Neurol. 2015;78(3):466–76.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wilker EH, Preis SR, Beiser AS, Wolf PA, Au R, Kloog I, et al. Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure. Stroke; a journal of cerebral circulation. 2015;46(5):1161–6.PubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tzivian L, Dlugaj M, Winkler A, Weinmayr G, Hennig F, Fuks KB, et al. Long-term air pollution and traffic noise exposures and mild cognitive impairment in older adults: a cross-sectional analysis of the Heinz Nixdorf recall study. Environ Health Perspect. 2016;124(9):1361–8.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zanobetti A, Dominici F, Wang Y, Schwartz JD. A national case-crossover analysis of the short-term effect of PM2.5 on hospitalizations and mortality in subjects with diabetes and neurological disorders. Environ Health. 2014;13(1):38.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Palacios N, Fitzgerald KC, Hart JE, Weisskopf MG, Schwarzschild MA, Ascherio A, et al. Particulate matter and risk of Parkinson disease in a large prospective study of women. Environ Health. 2014;13:80.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Chen JC, Schwartz J. Neurobehavioral effects of ambient air pollution on cognitive performance in US adults. Neurotoxicology. 2009;30(2):231–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Ranft U, Schikowski T, Sugiri D, Krutmann J, Kramer U. Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environ Res. 2009;109(8):1004–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Chang KH, Chang MY, Muo CH, Wu TN, Chen CY, Kao CH. Increased risk of dementia in patients exposed to nitrogen dioxide and carbon monoxide: a population-based retrospective cohort study. PLoS One. 2014;9(8):e103078.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lee PC, Liu LL, Sun Y, Chen YA, Liu CC, Li CY, et al. Traffic-related air pollution increased the risk of Parkinson’s disease in Taiwan: a nationwide study. Environ Int. 2016;96:75–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Finkelstein MM, Jerrett M. A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environ Res. 2007;104(3):420–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Ritz B, Lee PC, Hansen J, Lassen CF, Ketzel M, Sorensen M, et al. Traffic-related air pollution and Parkinson’s disease in Denmark: a case-control study. Environ Health Perspect. 2016;124(3):351–6.PubMedGoogle Scholar
  39. 39.
    Angelici L, Piola M, Cavalleri T, Randi G, Cortini F, Bergamaschi R, et al. Effects of particulate matter exposure on multiple sclerosis hospital admission in Lombardy region. Italy Environ Res. 2016;145:68–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Oudin A, Forsberg B, Adolfsson AN, Lind N, Modig L, Nordin M, et al. Traffic-related air pollution and dementia incidence in Northern Sweden: a longitudinal study. Environ Health Perspect. 2016;124(3):306–12.PubMedGoogle Scholar
  41. 41.
    • Chen H, Kwong JC, Copes R, Tu K, Villeneuve PJ, van Donkelaar A, et al. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based cohort study. Lancet. 2017;389(10070):718–26. This is a recent, large prospective study that explores whether living next to major roads/traffic associated air pollution is associated with elevated incidence of several neurodegenerative diseases. This work reports that only dementia showed a significant relationship with being located near a highly traveled roadway. Google Scholar
  42. 42.
    Wellenius GA, Boyle LD, Coull BA, Milberg WP, Gryparis A, Schwartz J, et al. Residential proximity to nearest major roadway and cognitive function in community-dwelling seniors: results from the MOBILIZE Boston study. J Am Geriatr Soc. 2012;60(11):2075–80.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Power MC, Weisskopf MG, Alexeeff SE, Coull BA, Spiro 3rd A, Schwartz J. Traffic-related air pollution and cognitive function in a cohort of older men. Environ Health Perspect. 2011;119(5):682–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Bowler RM, Kornblith ES, Gocheva VV, Colledge MA, Bollweg G, Kim Y, et al. Environmental exposure to manganese in air: associations with cognitive functions. Neurotoxicology. 2015;49:139–48.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Palacios N, Fitzgerald K, Roberts AL, Hart JE, Weisskopf MG, Schwarzschild MA, et al. A prospective analysis of airborne metal exposures and risk of Parkinson disease in the nurses’ health study cohort. Environ Health Perspect. 2014;122(9):933–8.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Malek AM, Barchowsky A, Bowser R, Heiman-Patterson T, Lacomis D, Rana S, et al. Exposure to hazardous air pollutants and the risk of amyotrophic lateral sclerosis. Environ Pollut. 2015;197:181–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Zeng Y, Gu D, Purser J, Hoenig H, Christakis N. Associations of environmental factors with elderly health and mortality in China. Am J Public Health. 2010;100(2):298–305.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R. How common are the “common” neurologic disorders? Neurology. 2007;68(5):326–37.PubMedCrossRefGoogle Scholar
  49. 49.
    Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–74.PubMedCrossRefGoogle Scholar
  51. 51.
    Pedersen NL, Gatz M, Berg S, Johansson B. How heritable is Alzheimer’s disease late in life? Findings from Swedish twins. Ann Neurol. 2004;55(2):180–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Pedersen NL. Reaching the limits of genome-wide significance in Alzheimer disease: back to the environment. JAMA. 2010;303(18):1864–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Oudin A, Forsberg B, Adolfsson AN, Lind N, Modig L, Nordin M, et al. Traffic-related air pollution and dementia incidence in northern Sweden: a longitudinal study. Environ Health Persp. 2016;124(3):306–12.Google Scholar
  54. 54.
    Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Kish SJ, Shannak K, Rajput A, Deck JH, Hornykiewicz O. Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson’s disease. J Neurochem. 1992;58(2):642–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Schapira AH. Science, medicine, and the future: Parkinson’s disease. BMJ. 1999;318(7179):311–4.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol. 2011;26(Suppl 1):S1–58.PubMedCrossRefGoogle Scholar
  58. 58.
    de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–35.PubMedCrossRefGoogle Scholar
  59. 59.
    Lesage S, Brice A. Role of Mendelian genes in “sporadic” Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(Suppl 1):S66–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Kieburtz K, Wunderle KB. Parkinson’s disease: evidence for environmental risk factors. Mov Disord. 2013;28(1):8–13.PubMedCrossRefGoogle Scholar
  61. 61.
    Vojinovic S, Savic D, Lukic S, Savic L, Vojinovic J. Disease relapses in multiple sclerosis can be influenced by air pollution and climate seasonal conditions. Vojnosanit Pregl. 2015;72(1):44–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Heydarpour P, Amini H, Khoshkish S, Seidkhani H, Sahraian MA, Yunesian M. Potential impact of air pollution on multiple sclerosis in Tehran. Iran Neuroepidemiology. 2014;43(3–4):233–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Oikonen M, Laaksonen M, Laippala P, Oksaranta O, Lilius EM, Lindgren S, et al. Ambient air quality and occurrence of multiple sclerosis relapse. Neuroepidemiology. 2003;22(1):95–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJ, Reynolds R, Martin R. Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci. 2015;16(3):147–58.PubMedCrossRefGoogle Scholar
  65. 65.
    Harbo HF, Gold R, Tintore M. Sex and gender issues in multiple sclerosis. Ther Adv Neurol Disord. 2013;6(4):237–48.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pelletier D, Hafler DA. Fingolimod for multiple sclerosis. New Engl J Med. 2012;366(4):339–47.PubMedCrossRefGoogle Scholar
  67. 67.
    Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2016.Google Scholar
  68. 68.
    Haulcomb MM, Mesnard-Hoaglin NA, Batka RJ, Meadows RM, Miller WM, Mcmillan KP, et al. Identification of B6SJL mSOD1(G93A) mouse subgroups with different disease progression rates. J Comp Neurol. 2015;523(18):2752–68.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Naganska E, Matyja E. Amyotrophic lateral sclerosis—looking for pathogenesis and effective therapy. Folia Neuropathol. 2011;49(1):1–13.PubMedGoogle Scholar
  70. 70.
    Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci. 2013;14(4):248–64.PubMedCrossRefGoogle Scholar
  71. 71.
    Taylor JP, Brown Jr RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197–206.PubMedCrossRefGoogle Scholar
  72. 72.
    Kristiansson M, Sorman K, Tekwe C, Calderon-Garciduenas L. Urban air pollution, poverty, violence and health - neurological and immunological aspects as mediating factors. Environ Res. 2015;140:511–3.PubMedCrossRefGoogle Scholar
  73. 73.
    Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.PubMedCrossRefGoogle Scholar
  74. 74.
    Bjelobaba I, Savic D, Lavrnja I. Multiple sclerosis and neuroinflammation: the overview of current and prospective therapies. Curr Pharm Des. 2016.Google Scholar
  75. 75.
    Joers V, Tansey MG, Mulas G, Carta AR. Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol. 2016; doi: 10.1016/j.pneurobio.2016.04.006.PubMedGoogle Scholar
  76. 76.
    Schwartz M, Deczkowska A. Neurological disease as a failure of brain-immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol. 2016;37(10):668–79.PubMedCrossRefGoogle Scholar
  77. 77.
    Sole-Domenech S, Cruz DL, Capetillo-Zarate E, Maxfield FR. The endocytic pathway in microglia during health, aging and Alzheimer’s disease. Ageing Res Rev. 2016;32:89–103.PubMedCrossRefGoogle Scholar
  78. 78.
    Reemst K, Noctor SC, Lucassen PJ, Hol EM. The indispensable roles of microglia and astrocytes during brain development. Front Hum Neurosci. 2016;10:566.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nelson LH, Lenz KM. Microglia depletion in early life programs persistent changes in social, mood-related, and locomotor behavior in male and female rats. Behav Brain Res. 2017;316:279–93.PubMedCrossRefGoogle Scholar
  80. 80.
    Hong S, Dissing-Olesen L, Stevens B. New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol. 2016;36:128–34.PubMedCrossRefGoogle Scholar
  81. 81.
    Brown GC, Vilalta A. How microglia kill neurons. Brain Res. 2015;1628:288–97.PubMedCrossRefGoogle Scholar
  82. 82.
    Correale J. The role of microglial activation in disease progression. Mult Scler J. 2014;20(10):1288–95.CrossRefGoogle Scholar
  83. 83.
    Naert G, Rivest S. The role of microglial cell subsets in Alzheimer’s disease. Curr Alzheimer Res. 2011;8(2):151–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Phani S, Re DB, Przedborski S. The role of the innate immune system in ALS. Front Pharmacol. 2012;3:150.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Brites D, Vaz AR. Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci. 2014;8.Google Scholar
  86. 86.
    Doring A, Yong VW. The good, the bad and the ugly. Macrophages/microglia with a focus on myelin repair. Front Biosci (Schol Ed). 2011;3:846–56.CrossRefGoogle Scholar
  87. 87.
    German DC, Eagar T, Sonsalla PK. Parkinson’s disease: a role for the immune system. Curr Mol Pharmacol. 2011.Google Scholar
  88. 88.
    Olsson B, Hertze J, Lautner R, Zetterberg H, Nagga K, Hoglund K, et al. Microglial markers are elevated in the prodromal phase of Alzheimer’s disease and vascular dementia. J Alzheimers Dis. 2013;33(1):45–53.PubMedGoogle Scholar
  89. 89.
    Calderon-Garciduenas L, Solt AC, Henriquez-Roldan C, Torres-Jardon R, Nuse B, Herritt L, et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol. 2008;36(2):289–310.PubMedCrossRefGoogle Scholar
  90. 90.
    Calderon-Garciduenas L, Cross JV, Franco-Lira M, Aragon-Flores M, Kavanaugh M, Torres-Jardon R, et al. Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrPc), interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution. Front Neurosci-Switz. 2013;7.Google Scholar
  91. 91.
    Calderon-Garciduenas L, Franco-Lira M, Mora-Tiscarenno A, Medina-Cortina H, Torres-Jardon R, Kavanaugh M. Early Alzheimer’s and Parkinson’s disease pathology in urban children: friend versus foe responses—it is time to face the evidence. Biomed Res Int. 2013; doi: 10.1155/2013/161687.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Calderon-Garciduenas L, Mora-Tiscareno A, Gomez-Garza G, Carrasco-Portugal MD, Perez-Guille B, Flores-Murrieta FJ, et al. Effects of a cyclooxygenase-2 preferential inhibitor in young healthy dogs exposed to air pollution: a pilot study. Toxicol Pathol. 2009;37(5):644–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Tyler CR, Zychowski KE, Sanchez BN, Rivero V, Lucas S, Herbert G, et al. Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes. Part Fibre Toxicol. 2016;13(1):64.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Persp. 2016;124(10):1537–46.CrossRefGoogle Scholar
  95. 95.
    Campbell A, Araujo JA, Li H, Sioutas C, Kleinman M. Particulate matter induced enhancement of inflammatory markers in the brains of apolipoprotein E knockout mice. J Nanosci Nanotechnol. 2009;9(8):5099–104.PubMedCrossRefGoogle Scholar
  96. 96.
    Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, et al. Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology. 2005;26(1):133–40.PubMedCrossRefGoogle Scholar
  97. 97.
    Hogan MK, Kovalycsik T, Sun QH, Rajagopalan S, Nelson RJ. Combined effects of exposure to dim light at night and fine particulate matter on C3H/HeNHsd mice. Behav Brain Res. 2015;294:81–8.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Santiago-Lopez D, Bautista-Martinez JA, Reyes-Hernandez CI, Aguilar-Martinez M, Rivas-Arancibia S. Oxidative stress, progressive damage in the substantia nigra and plasma dopamine oxidation, in rats chronically exposed to ozone. Toxicol Lett. 2010;197(3):193–200.PubMedCrossRefGoogle Scholar
  99. 99.
    Mumaw CL, Levesque S, McGraw C, Robertson S, Lucas S, Stafflinger JE, et al. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors. FASEB J. 2016;30(5):1880–91.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Rivas-Arancibia S, Zimbron LFH, Rodriguez-Martinez E, Maldonado PD, Perez GB, Sepulveda-Parada M. Oxidative stress-dependent changes in immune responses and cell death in the substantia nigra after ozone exposure in rat. Front Aging Neurosci. 2015;7:65.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Gerlofs-Nijland ME, van Berlo D, Cassee FR, Schins RP, Wang K, Campbell A. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Part Fibre Toxicol. 2010;7:12.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Levesque S, Taetzsch T, Lull ME, Kodavanti U, Stadler K, Wagner A, et al. Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ Health Perspect. 2011;119(8):1149–55.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Levesque S, Surace MJ, McDonald J, Block ML. Air pollution and the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation. 2011;8(1):105.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Cole TB, Coburn J, Dao K, Roque P, Chang YC, Kalia V, et al. Sex and genetic differences in the effects of acute diesel exhaust exposure on inflammation and oxidative stress in mouse brain. Toxicology. 2016;374:1–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Oppenheim HA, Lucero J, Guyot AC, Herbert LM, McDonald JD, Mabondzo A, et al. Exposure to vehicle emissions results in altered blood brain barrier permeability and expression of matrix metalloproteinases and tight junction proteins in mice. Particle and Fibre Toxicology. 2013;10:62.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Antonini JM, Sriram K, Benkovic SA, Roberts JR, Stone S, Chen BT, et al. Mild steel welding fume causes manganese accumulation and subtle neuroinflammatory changes but not overt neuronal damage in discrete brain regions of rats after short-term inhalation exposure. Neurotoxicology. 2009;30(6):915–25.PubMedCrossRefGoogle Scholar
  107. 107.
    Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114(8):1172–8.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Bolton JL, Smith SH, Huff NC, Gilmour MI, Foster WM, Auten RL, et al. Prenatal air pollution exposure induces neuroinflammation and predisposes offspring to weight gain in adulthood in a sex-specific manner. FASEB J. 2012;26(11):4743–54.PubMedCrossRefGoogle Scholar
  109. 109.
    Bolton JL, Huff NC, Smith SH, Mason SN, Foster WM, Auten RL, et al. Maternal stress and effects of prenatal air pollution on offspring mental health outcomes in mice. Environ Health Persp. 2013;121(9):1075–82.Google Scholar
  110. 110.
    Swanson KJ, Madden MC, Ghio AJ. Biodiesel exhaust: the need for health effects research. Environ Health Perspect. 2007;115(4):496–9.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Larcombe AN, Kicic A, Mullins BJ, Knothe G. Biodiesel exhaust: the need for a systematic approach to health effects research. Respirology. 2015;20(7):1034–45.PubMedCrossRefGoogle Scholar
  112. 112.
    Prokopowicz A, Zaciera M, Sobczak A, Bielaczyc P, Woodburn J. The effects of neat biodiesel and biodiesel and HVO blends in diesel fuel on exhaust emissions from a light duty vehicle with a diesel engine. Environ Sci Technol. 2015;49(12):7473–82.PubMedCrossRefGoogle Scholar
  113. 113.
    Shojaeefard MH, Etgahni MM, Meisami F, Barari A. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine. Environ Technol. 2013;34(13–16):2019–26.PubMedCrossRefGoogle Scholar
  114. 114.
    Mutlu E, Nash DG, King C, Krantz TQ, Preston WT, Kooter IM, et al. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies. Inhal Toxicol. 2015;27(11):515–32.PubMedCrossRefGoogle Scholar
  115. 115.
    Mumaw CL, Surace M, Levesque S, Kodavanti UP, Kodavanti PR, Royland JE, et al. Atypical microglial response to biodiesel exhaust in healthy and hypertensive rats. Neurotoxicology. 2016.Google Scholar
  116. 116.
    Merino JJ, Muneton-Gomez V, Alvarez MI, Toledano-Diaz A. Effects of CX3CR1 and fractalkine chemokines in amyloid beta clearance and p-Tau accumulation in Alzheimer’s disease (AD) rodent models: is fractalkine a systemic biomarker for AD? Curr Alzheimer Res. 2015.Google Scholar
  117. 117.
    Zanier ER, Marchesi F, Ortolano F, Perego C, Arabian M, Zoerle T, et al. Fractalkine receptor deficiency is associated with early protection but late worsening of outcome following brain trauma in mice. J Neurotrauma. 2015.Google Scholar
  118. 118.
    Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci. 2013;7:45.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ousman SS, Kubes P. Immune surveillance in the central nervous system. Nat Neurosci. 2012;15(8):1096–101.PubMedCrossRefGoogle Scholar
  120. 120.
    Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76(2):77–98.PubMedCrossRefGoogle Scholar
  121. 121.
    Heusinkveld HJ, Wahle T, Campbell A, Westerink RH, Tran L, Johnston H, et al. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology. 2016;56:94–106.PubMedCrossRefGoogle Scholar
  122. 122.
    Oberdorster G, Elder A, Rinderknecht A. Nanoparticles and the brain: cause for concern? J Nanosci Nanotechnol. 2009;9(8):4996–5007.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Maher BA, Ahmed IAM, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, et al. Magnetite pollution nanoparticles in the human brain. P Natl Acad Sci USA. 2016;113(39):10797–801.CrossRefGoogle Scholar
  124. 124.
    Plascencia-Villa G, Ponce A, Collingwood JF, Arellano-Jimenez MJ, Zhu X, Rogers JT, et al. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease. Sci Rep. 2016;6:24873.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Kreyling WG. Discovery of unique and ENM-specific pathophysiologic pathways: comparison of the translocation of inhaled iridium nanoparticles from nasal epithelium versus alveolar epithelium towards the brain of rats. Toxicol Appl Pharmacol. 2016;299:41–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Thomson EM, Kumarathasan P, Calderon-Garciduenas L, Vincent R. Air pollution alters brain and pituitary endothelin-1 and inducible nitric oxide synthase gene expression. Environ Res. 2007;105(2):224–33.PubMedCrossRefGoogle Scholar
  127. 127.
    Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen LC, Geiser M, et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol. 2006;3:13.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Cheng H, Davis DA, Hasheminassab S, Sioutas C, Morgan TE, Finch CE. Urban traffic-derived nanoparticulate matter reduces neurite outgrowth via TNFalpha in vitro. J Neuroinflammation. 2016;13:19.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Liu F, Huang YL, Zhang F, Chen Q, Wu BQ, Rui W, et al. Macrophages treated with particulate matter PM2.5 induce selective neurotoxicity through glutaminase-mediated glutamate generation. J Neurochem. 2015;134(2):315–26.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Campbell A, Daher N, Solaimani P, Mendoza K, Sioutas C. Human brain derived cells respond in a type-specific manner after exposure to urban particulate matter (PM). Toxicol in Vitro. 2014;28(7):1290–5.PubMedCrossRefGoogle Scholar
  131. 131.
    Gillespie P, Tajuba J, Lippmann M, Chen LC, Veronesi B. Particulate matter neurotoxicity in culture is size-dependent. Neurotoxicology. 2011.Google Scholar
  132. 132.
    Sama P, Long TC, Hester S, Tajuba J, Parker J, Chen LC, et al. The cellular and genomic response of an immortalized microglia cell line (BV2) to concentrated ambient particulate matter. Inhal Toxicol. 2007;19(13):1079–87.PubMedCrossRefGoogle Scholar
  133. 133.
    Ma JY, Ma JK. The dual effect of the particulate and organic components of diesel exhaust particles on the alteration of pulmonary immune/inflammatory responses and metabolic enzymes. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev. 2002;20(2):117–47.CrossRefGoogle Scholar
  134. 134.
    Hesterberg TW, Long CM, Lapin CA, Hamade AK, Valberg PA. Diesel exhaust particulate (DEP) and nanoparticle exposures: what do DEP human clinical studies tell us about potential human health hazards of nanoparticles? Inhal Toxicol. 2010;22(8):679–94.PubMedCrossRefGoogle Scholar
  135. 135.
    Mauderly JL. Diesel emissions: is more health research still needed? Toxicol Sci. 2001;62(1):6–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Roque PJ, Dao K, Costa LG. Microglia mediate diesel exhaust particle-induced cerebellar neuronal toxicity through neuroinflammatory mechanisms. Neurotoxicology. 2016;56:204–14.PubMedCrossRefGoogle Scholar
  137. 137.
    Levesque S, Taetzsch T, Lull ME, Johnson JA, McGraw C, Block ML. The role of MAC1 in diesel exhaust particle-induced microglial activation and loss of dopaminergic neuron function. J Neurochem. 2013;125(5):756–65.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Block ML, Wu X, Pei Z, Li G, Wang T, Qin L, et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J. 2004;18(13):1618–20.PubMedGoogle Scholar
  139. 139.
    Chen SH, Oyarzabal EA, Hong JS. Critical role of the Mac1/NOX2 pathway in mediating reactive microgliosis-generated chronic neuroinflammation and progressive neurodegeneration. Curr Opin Pharmacol. 2016;26:54–60.PubMedCrossRefGoogle Scholar
  140. 140.
    Pei Z, Pang H, Qian L, Yang S, Wang T, Zhang W, et al. MAC1 mediates LPS-induced production of superoxide by microglia: the role of pattern recognition receptors in dopaminergic neurotoxicity. Glia. 2007;55(13):1362–73.PubMedCrossRefGoogle Scholar
  141. 141.
    Levesque S, Wilson B, Gregoria V, Thorpe LB, Dallas S, Polikov VS, et al. Reactive microgliosis: extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity. Brain. 2010;133(Pt 3):808–21.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Hu X, Zhang D, Pang H, Caudle WM, Li Y, Gao H, et al. Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. J Immunol. 2008;181(10):7194–204.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Zhang W, Dallas S, Zhang D, Guo JP, Pang H, Wilson B, et al. Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant alpha-synuclein. Glia. 2007;55(11):1178–88.PubMedCrossRefGoogle Scholar
  144. 144.
    Zhang D, Hu X, Qian L, Chen SH, Zhou H, Wilson B, et al. Microglial MAC1 receptor and PI3K are essential in mediating beta-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation. 2011;8(1):3.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55(5):453–62.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Zhou J, Huang WQ, Li C, Wu GY, Li YS, Wen SH, et al. Intestinal ischemia/reperfusion enhances microglial activation and induces cerebral injury and memory dysfunction in rats. Crit Care Med. 2012;40(8):2438–48.PubMedCrossRefGoogle Scholar
  147. 147.
    Tamagawa E, van Eeden SF. Impaired lung function and risk for stroke: role of the systemic inflammation response? Chest. 2006;130(6):1631–3.PubMedCrossRefGoogle Scholar
  148. 148.
    Folkmann JK, Risom L, Hansen CS, Loft S, Moller P. Oxidatively damaged DNA and inflammation in the liver of dyslipidemic ApoE−/− mice exposed to diesel exhaust particles. Toxicology. 2007;237(1–3):134–44.PubMedCrossRefGoogle Scholar
  149. 149.
    Steenhof M, Janssen NA, Strak M, Hoek G, Gosens I, Mudway IS, et al. Air pollution exposure affects circulating white blood cell counts in healthy subjects: the role of particle composition, oxidative potential and gaseous pollutants—the RAPTES project. Inhal Toxicol. 2014;26(3):141–65.PubMedCrossRefGoogle Scholar
  150. 150.
    den Hartigh LJ, Lame MW, Ham W, Kleeman MJ, Tablin F, Wilson DW. Endotoxin and polycyclic aromatic hydrocarbons in ambient fine particulate matter from Fresno, California initiate human monocyte inflammatory responses mediated by reactive oxygen species. Toxicol in Vitro. 2010;24(7):1993–2002.CrossRefGoogle Scholar
  151. 151.
    Swiston JR, Davidson W, Attridge S, Li GT, Brauer M, van Eeden SF. Wood smoke exposure induces a pulmonary and systemic inflammatory response in firefighters. Eur Respir J. 2008;32(1):129–38.PubMedCrossRefGoogle Scholar
  152. 152.
    Ruckerl R, Greven S, Ljungman P, Aalto P, Antoniades C, Bellander T, et al. Air pollution and inflammation (interleukin-6, C-reactive protein, fibrinogen) in myocardial infarction survivors. Environ Health Perspect. 2007;115(7):1072–80.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Calderon-Garciduenas L, Cross JV, Franco-Lira M, Aragon-Flores M, Kavanaugh M, Torres-Jardon R, et al. Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrP(C)), interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution. Front Neurosci. 2013;7:183.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Nwokoro C, Ewin C, Harrison C, Ibrahim M, Dundas I, Dickson I, et al. Cycling to work in London and inhaled dose of black carbon. Eur Respir J. 2012;40(5):1091–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Calderon-Garciduenas L, Villarreal-Calderon R, Valencia-Salazar G, Henriquez-Roldan C, Gutierrez-Castrellon P, Torres-Jardon R, et al. Systemic inflammation, endothelial dysfunction, and activation in clinically healthy children exposed to air pollutants. Inhal Toxicol. 2008;20(5):499–506.PubMedCrossRefGoogle Scholar
  156. 156.
    Calderon-Garciduenas L, Mora-Tiscareno A, Ontiveros E, Gomez-Garza G, Barragan-Mejia G, Broadway J, et al. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs. Brain Cogn. 2008;68(2):117–27.PubMedCrossRefGoogle Scholar
  157. 157.
    Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Perspect. 2016;124(10):1537–46.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Chiu IM, von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci. 2012;15(8):1063–7.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Kodavanti UP. Stretching the stress boundary: linking air pollution health effects to a neurohormonal stress response. Biochim Biophys Acta. 2016;1860(12):2880–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Richard L. Jayaraj
    • 1
  • Eric A. Rodriguez
    • 1
  • Yi Wang
    • 2
  • Michelle L. Block
    • 1
  1. 1.Department of Anatomy and Cell Biology, The Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of Environmental Health, Indiana University Richard M. Fairbanks School of Public HealthIndiana UniversityIndianapolisUSA

Personalised recommendations