Advertisement

Current Environmental Health Reports

, Volume 4, Issue 1, pp 99–107 | Cite as

Natural Disasters and Cholera Outbreaks: Current Understanding and Future Outlook

  • Antarpreet JutlaEmail author
  • Rakibul Khan
  • Rita Colwell
Water and Health (T Wade, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Water and Health

Abstract

Purpose of Review

Diarrheal diseases remain a serious global public health threat, especially for those populations lacking access to safe water and sanitation infrastructure. Although association of several diarrheal diseases, e.g., cholera, shigellosis, etc., with climatic processes has been documented, the global human population remains at heightened risk of outbreak of diseases after natural disasters, such as earthquakes, floods, or droughts. In this review, cholera was selected as a signature diarrheal disease and the role of natural disasters in triggering and transmitting cholera was analyzed.

Recent Findings

Key observations include identification of an inherent feedback loop that includes societal structure, prevailing climatic processes, and spatio-temporal seasonal variability of natural disasters. Data obtained from satellite-based remote sensing are concluded to have application, although limited, in predicting risks of a cholera outbreak(s).

Summary

We argue that with the advent of new high spectral and spatial resolution data, earth observation systems should be seamlessly integrated in a decision support mechanism to be mobilize resources when a region suffers a natural disaster. A framework is proposed that can be used to assess the impact of natural disasters with response to outbreak of cholera, providing assessment of short- and long-term influence of climatic processes on disease outbreaks.

Keywords

Cholera Natural disaster Outbreaks Precipitation Temperature Remote sensing 

Notes

Acknowledgments

This research is funded from a NASA grant (NNX15AF71G).

Compliance With Ethical Standards

Conflict of Interest

A.J., R.K., and R.C. declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    World Health Organization. Communicable diseases following natural disasters [Internet]. 1211 Geneva 27 Switzerland; 2006. Report No.: WHO/CDS/NTD/DCE/2006.4. Available: http://www.who.int/diseasecontrol_emergencies/guidelines/CD_Disasters_26_06.pdf.
  2. 2.
    EM DAT. The OFDA/CRED International Disaster Database [Internet]. 2016. Available: http://www.emdat.be/classification.
  3. 3.
    Leaning J, Guha-Sapir D. Natural disasters, armed conflict, and public health. N Engl J Med. 2013;369:1836–42. doi: 10.1056/NEJMra1109877.CrossRefPubMedGoogle Scholar
  4. 4.
    World Meteorological Organization. Atlas of health and climate. Geneva: World Meteorological Organization; 2012.Google Scholar
  5. 5.
    de Magny GC, Murtugudde R, MRP S, Nizam A, Brown CW, Busalacchi AJ, et al. Environmental signatures associated with cholera epidemics. Proc Natl Acad Sci. 2008;105:17676–81. doi: 10.1073/pnas.0809654105.CrossRefGoogle Scholar
  6. 6.
    Reidl J, Klose KE. Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev. 2002;26:125–39.CrossRefPubMedGoogle Scholar
  7. 7.
    Zuckerman JN, Rombo L, Fisch A. The true burden and risk of cholera: implications for prevention and control. Lancet Infect Dis. 2007;7:521–30. doi: 10.1016/S1473-3099(07)70138-X.CrossRefPubMedGoogle Scholar
  8. 8.
    • Jutla A, Aldaach H, Akanda AS, Huq A, Colwell RR. Satellite based assessment of hydroclimatic conditions related to cholera in Zimbabwe. PLOS-One. 2015; doi: 10.1371/journal.pone.0137828. This study is critical to understand role of remote sensing in developing prediction mechanisms of cholera in regions that are affected by natural disasters PubMedPubMedCentralGoogle Scholar
  9. 9.
    Alexander KA, Carzolio M, Goodin D, Vance E. Climate change is likely to worsen the public health threat of diarrheal disease in Botswana. Int J Environ Res Public Health. 2013;10:1202–30. doi: 10.3390/ijerph10041202.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Enserink M. Haiti’s outbreak is latest in Cholera’s new global assault. Science. 2010;330:738–9. doi: 10.1126/science.330.6005.738.CrossRefPubMedGoogle Scholar
  11. 11.
    Eppinger M, Pearson T, Koenig SSK, Pearson O, Hicks N, Agrawal S, et al. Genomic epidemiology of the Haitian cholera outbreak: a single introduction followed by rapid, extensive, and continued spread characterized the onset of the epidemic. MBio. 2014;5:e01721–14. doi: 10.1128/mBio.01721-14.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Frerichs RR, Keim PS, Barrais R, Piarroux R. Nepalese origin of cholera epidemic in Haiti. Clin Microbiol Infect. 2012;18:E158–63. doi: 10.1111/j.1469-0691.2012.03841.x.CrossRefPubMedGoogle Scholar
  13. 13.
    Alam M, Hasan NA, Sadique A, Bhuiyan NA, Ahmed KU, Nusrin S, et al. Seasonal cholera caused by Vibrio cholerae serogroups O1 and O139 in the coastal aquatic environment of Bangladesh. Appl Environ Microbiol. 2006;72:4096–104. doi: 10.1128/AEM.00066-06.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol. 1983;45:275–83.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Jutla A, Whitcombe E, Hasan N, Haley B, Akanda A, Huq A, et al. Environmental factors influencing epidemic cholera. AmJTrop Med Hyg. 2013;89:597–607. doi: 10.4269/ajtmh.12-0721.CrossRefGoogle Scholar
  16. 16.
    Singleton FL, Attwell RW, Jangi MS, Colwell RR. Influence of salinity and organic nutrient concentration on survival and growth of Vibrio cholerae in aquatic microcosms. Appl Environ Microbiol. 1982;43:1080–5.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Codeco CT, Lele S, Pascual M, Bouma M, Ko AI. A stochastic model for ecological systems with strong nonlinear response to environmental drivers: application to two water-borne diseases. J R Soc Interface. 2008;5:247–52. doi: 10.1098/rsif.2007.1135.CrossRefPubMedGoogle Scholar
  18. 18.
    Rinaldo A, Rigon R, Banavar JR, Maritan A, Rodriguez-Iturbe I. Evolution and selection of river networks: statics, dynamics, and complexity. Proc Natl Acad Sci. 2014;111:2417–24. doi: 10.1073/pnas.1322700111.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Epstein PR. Algal blooms in the spread and persistence of cholera. Biosystems. 1993;31:209–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Colwell RR. Global climate and infectious disease: the cholera paradigm. Science. 1996;274:2025–31. doi: 10.1126/science.274.5295.2025.CrossRefPubMedGoogle Scholar
  21. 21.
    Jutla AS, Akanda AS, Islam S. Tracking cholera in coastal regions using satellite observations 1. JAWRA J Am Water Resour Assoc. 2010;46:651–62. doi: 10.1111/j.1752-1688.2010.00448.x.CrossRefPubMedGoogle Scholar
  22. 22.
    Rebaudet S, Sudre B, Faucher B, Piarroux R. Environmental determinants of cholera outbreaks in inland Africa: a systematic review of main transmission foci and propagation routes. J Infect Dis. 2013;208(Suppl 1):S46–54. doi: 10.1093/infdis/jit195.CrossRefPubMedGoogle Scholar
  23. 23.
    WHO | Cholera in Zimbabwe—update [Internet]. [cited 6 Oct 2014]. Available: http://www.who.int/csr/don/2008_12_26/en/.
  24. 24.
    Huq A, Sack RB, Nizam A, Longini IM, Nair GB, Ali A, et al. Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl Environ Microbiol. 2005;71:4645–54. doi: 10.1128/AEM.71.8.4645-4654.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    McMichael A. Human population health: sentinel criterion of environmental sustainability. Curr Opin Environ Sustain. 2009;1:101–6. doi: 10.1016/j.cosust.2009.07.001.CrossRefGoogle Scholar
  26. 26.
    • Brown L, Murray V. Examining the relationship between infectious diseases and flooding in Europe: a systematic literature review and summary of possible public health interventions. Disaster Health. 2013;1:117–27. doi: 10.4161/dish.25216. This study provides an overview of the infectious diseases and flooding in Europe. The important take-home message is that under natural disasters, even the regions with sophisticated water and sanitation infrastructure remain vulnerable to disease outbreak CrossRefGoogle Scholar
  27. 27.
    Emch M, Feldacker C, Yunus M, Streatfield PK, DinhThiem V, Canh DG, et al. Local environmental predictors of cholera in Bangladesh and Vietnam. AmJTrop Med Hyg. 2008;78:823–32.Google Scholar
  28. 28.
    Bartlett JG. Infectious diseases associated with natural disasters. The Social Ecology of Infectious Diseases. Elsevier; 2008. pp. 351–377. Available: http://linkinghub.elsevier.com/retrieve/pii/B9780123704665500182.
  29. 29.
    Pan-American Health Organization, editor. Natural disasters: protecting the public’s health. Washington, DC: Pan American Health Organization; 2000.Google Scholar
  30. 30.
    Noji EK, editor. The public health consequences of disasters. New York: Oxford University Press; 1997.Google Scholar
  31. 31.
    Watson JT, Gayer M, Connolly MA. Epidemics after natural disasters. Emerg Infect Dis. 2007;13:1–5. doi: 10.3201/eid1301.060779.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cash RA, Halder SR, Husain M, Islam MS, Mallick FH, May MA, et al. Reducing the health effect of natural hazards in Bangladesh. Lancet. 2013;382:2094–103. doi: 10.1016/S0140-6736(13)61948-0.CrossRefPubMedGoogle Scholar
  33. 33.
    Joh RI, Wang H, Weiss H, Weitz JS. Dynamics of indirectly transmitted infectious diseases with immunological threshold. Bull Math Biol. 2009;71:845–62. doi: 10.1007/s11538-008-9384-4.CrossRefPubMedGoogle Scholar
  34. 34.
    Koelle K, Rodó X, Pascual M, Yunus M, Mostafa G. Refractory periods and climate forcing in cholera dynamics. Nature. 2005;436:696–700. doi: 10.1038/nature03820.CrossRefPubMedGoogle Scholar
  35. 35.
    Akanda AS. Warming oceans, phytoplankton, and river discharge: implications for cholera outbreaks. AmJTrop Med Hyg. 2011;85:303–8. doi: 10.4269/ajtmh.2011.11-0181.CrossRefGoogle Scholar
  36. 36.
    Finger F, Knox A, Bertuzzo E, Mari L, Bompangue D, Gatto M, et al. Cholera in the Lake Kivu region (DRC): integrating remote sensing and spatially explicit epidemiological modeling. Water Resour Res. 2014;50:5624–37. doi: 10.1002/2014WR015521.CrossRefGoogle Scholar
  37. 37.
    Faruque SM, Naser IB, Islam MJ, Faruque ASG, Ghosh AN, Nair GB, et al. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci. 2005;102:1702–7. doi: 10.1073/pnas.0408992102.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rinaldo A, Bertuzzo E, Mari L, Righetto L, Blokesch M, Gatto M, et al. Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections. Proc Natl Acad Sci. 2012;109:6602–7. doi: 10.1073/pnas.1203333109.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gelting R, Bliss K, Patrick M, Lockhart G, Handzel T. Water, sanitation and hygiene in Haiti: past, present, and future. AmJTrop Med Hyg. 2013;89:665–70. doi: 10.4269/ajtmh.13-0217.CrossRefGoogle Scholar
  40. 40.
    Sur D, Dutta P, Nair GB, Bhattacharya SK. Severe cholera outbreak following floods in a northern district of West Bengal. Indian J Med Res. 2000;112:178–82.PubMedGoogle Scholar
  41. 41.
    Kondo H, Seo N, Yasuda T, Hasizume M, Koido Y, Ninomiya N, et al. Post-flood—infectious diseases in Mozambique. Prehospital Disaster Med. 2002;17:126–33.CrossRefPubMedGoogle Scholar
  42. 42.
    Waring SC, Reynolds KM, D’Souza G, Arafat RR. Rapid assessment of household needs in the Houston area after Tropical Storm Allison. Disaster Manag Response DMR Off Publ Emerg Nurses Assoc. 2002; 3–9.Google Scholar
  43. 43.
    Cairncross S, Hunt C, Boisson S, Bostoen K, Curtis V, Fung IC, et al. Water, sanitation and hygiene for the prevention of diarrhoea. Int J Epidemiol. 2010;39:i193–205. doi: 10.1093/ije/dyq035.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Nelson EJ, Andrews JR, Maples S, Barry M, Clemens JD. Is a cholera outbreak preventable in post-earthquake Nepal? Clements ACA, editor. PLoS Negl Trop Dis. 2015;9:e0003961. doi: 10.1371/journal.pntd.0003961.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mari L, Bertuzzo E, Righetto L, Casagrandi R, Gatto M, Rodriguez-Iturbe I, et al. On the role of human mobility in the spread of cholera epidemics: towards an epidemiological movement ecology: human mobility and cholera epidemics. Ecohydrology. 2012;5:531–40. doi: 10.1002/eco.262.CrossRefGoogle Scholar
  46. 46.
    Mukandavire Z, Smith DL, Morris Jr JG. Cholera in Haiti: reproductive numbers and vaccination coverage estimates. Sci Rep. 2013;3 doi: 10.1038/srep00997.
  47. 47.
    Pascual M, Bouma MJ, Dobson AP. Cholera and climate: revisiting the quantitative evidence. Microbes Infect. 2002;4:237–45. doi: 10.1016/S1286-4579(01)01533-7.CrossRefPubMedGoogle Scholar
  48. 48.
    Fuller JA, Clasen T, Heijnen M, Eisenberg JNS. Shared sanitation and the prevalence of diarrhea in young children: evidence from 51 countries, 2001–2011. AmJTrop Med Hyg. 2014;91:173–80. doi: 10.4269/ajtmh.13-0503.CrossRefGoogle Scholar
  49. 49.
    Wutich A, Ragsdale K. Water insecurity and emotional distress: coping with supply, access, and seasonal variability of water in a Bolivian squatter settlement. Soc Sci Med. 2008;67:2116–25. doi: 10.1016/j.socscimed.2008.09.042. 1982CrossRefPubMedGoogle Scholar
  50. 50.
    Masuda N, Holme P. Predicting and controlling infectious disease epidemics using temporal networks. F1000Prime Rep. 2013;5 doi: 10.12703/P5-6.
  51. 51.
    Jutla AS, Akanda AS, Islam S. A framework for predicting endemic cholera using satellite derived environmental determinants. Environ Model Softw. 2013;47:148–58. doi: 10.1016/j.envsoft.2013.05.008.CrossRefGoogle Scholar
  52. 52.
    Bingham P, Verlander NQ, Cheal MJ. John Snow, William Farr and the 1849 outbreak of cholera that affected London: a reworking of the data highlights the importance of the water supply. Public Health. 2004;118:387–94. doi: 10.1016/j.puhe.2004.05.007.CrossRefPubMedGoogle Scholar
  53. 53.
    Nguyen VD, Sreenivasan N, Lam E, Ayers T, Kargbo D, Dafae F, et al. Cholera epidemic associated with consumption of unsafe drinking water and street-vended water—eastern Freetown, Sierra Leone, 2012. AmJTrop Med Hyg. 2014;90:518–23. doi: 10.4269/ajtmh.13-0567.CrossRefGoogle Scholar
  54. 54.
    Colombara DV, Cowgill KD, Faruque ASG. Risk factors for severe cholera among children under five in rural and urban Bangladesh, 2000–2008: a hospital-based surveillance study. Kirk M, editor. PLoS ONE. 2013;8: e54395. doi: 10.1371/journal.pone.0054395.
  55. 55.
    Harris JB, Podolsky MJ, Bhuiyan TR, Chowdhury F, Khan AI, LaRocque RC, et al. Immunologic responses to Vibrio cholerae in patients co-infected with intestinal parasites in Bangladesh. Davies SJ, editor. PLoS Negl Trop Dis. 2009;3: e403. doi: 10.1371/journal.pntd.0000403.
  56. 56.
    Penna MLF. Rede neural artificial para detecção de sobremortalidade atribuível à cólera no Ceará. Rev Saúde Pública. 2004;38:351–7. doi: 10.1590/S0034-89102004000300003.CrossRefPubMedGoogle Scholar
  57. 57.
    Osei FB, Duker AA, Stein A. Bayesian structured additive regression modeling of epidemic data: application to cholera. BMC Med Res Methodol. 2012;12:118. doi: 10.1186/1471-2288-12-118.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chiang P, Musa G, Sylk T, Bavley R, Keating W, Lakew B, et al. Use of GIS mapping as a public health tool—from cholera to cancer. Health Serv Insights. 2013;111 doi: 10.4137/HSI.S10471.
  59. 59.
    Griffith DC, Kelly-Hope LA, Miller MA. Review of reported cholera outbreaks worldwide, 1995–2005. AmJTrop Med Hyg. 2006;75:973–7.Google Scholar
  60. 60.
    Reyburn R, Kim DR, Emch M, Khatib A, von Seidlein L, Ali M. Climate variability and the outbreaks of cholera in Zanzibar, East Africa: a time series analysis. AmJTrop Med Hyg. 2011;84:862–9. doi: 10.4269/ajtmh.2011.10-0277.CrossRefGoogle Scholar
  61. 61.
    Bompangue D, Giraudoux P, Handschumacher P, Piarroux M, Sudre B, Ekwanzala M, et al. Lakes as source of cholera outbreaks, Democratic Republic of Congo. Emerg Infect Dis. 2008;14:798–800. doi: 10.3201/eid1405.071260.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hashizume M, Armstrong B, Hajat S, Wagatsuma Y, Faruque ASG, Hayashi T, et al. The effect of rainfall on the incidence of cholera in Bangladesh. Epidemiology. 2008;19:103–10. doi: 10.1097/EDE.0b013e31815c09ea.CrossRefPubMedGoogle Scholar
  63. 63.
    Schwartz BS, Harris JB, Khan AI, Larocque RC, Sack DA, Malek MA, et al. Diarrheal epidemics in Dhaka, Bangladesh, during three consecutive floods: 1988, 1998, and 2004. AmJTrop Med Hyg. 2006;74:1067–73.Google Scholar
  64. 64.
    Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faruque ASG, et al. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci. 2000;97:1438–43. doi: 10.1073/pnas.97.4.1438.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Pascual M. Cholera dynamics and El Nino–Southern Oscillation. Science. 2000;289:1766–9. doi: 10.1126/science.289.5485.1766.CrossRefPubMedGoogle Scholar
  66. 66.
    Worden AZ, Seidel M, Smriga S, Wick A, Malfatti F, Bartlett D, et al. Trophic regulation of Vibrio cholerae in coastal marine waters. Environ Microbiol. 2006;8:21–9. doi: 10.1111/j.1462-2920.2005.00863.x.CrossRefPubMedGoogle Scholar
  67. 67.
    Akanda AS, Jutla AS, Islam S. Dual peak cholera transmission in Bengal Delta: a hydroclimatological explanation. Geophys Res Lett. 2009;36:L19401. doi: 10.1029/2009GL039312.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Human Health and Hydro-environmental Sustainability Simulation Laboratory, Department of Civil and Environmental EngineeringWest Virginia UniversityMorgantownUSA
  2. 2.Center for Bioinformatics and Computational BiologyUniversity of MarylandCollege ParkUSA
  3. 3.Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations