Current Environmental Health Reports

, Volume 4, Issue 1, pp 30–37 | Cite as

Extracellular Vesicles: How the External and Internal Environment Can Shape Cell-To-Cell Communication

  • Kristof Y. Neven
  • Tim S. Nawrot
  • Valentina BollatiEmail author
Environment and Aging (A Peters, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Environment and Aging


Purpose of the review

To summarize the scientific evidence regarding the effects of environmental exposures on extracellular vesicle (EV) release and their contents. As environmental exposures might influence the aging phenotype in a very strict way, we will also report the role of EVs in the biological aging process.

Recent findings

EV research is a new and quickly developing field. With many investigations conducted so far, only a limited number of studies have explored the potential role EVs play in the response and adaptation to environmental stimuli. The investigations available to date have identified several exposures or lifestyle factors able to modify EV trafficking including air pollutants, cigarette smoke, alcohol, obesity, nutrition, physical exercise, and oxidative stress.


EVs are a very promising tool, as biological fluids are easily obtainable biological media that, if successful in identifying early alterations induced by the environment and predictive of disease, would be amenable to use for potential future preventive and diagnostic applications.


Extracellular vesicles Exosomes Microvesicles Environmental exposures Aging 



V.B. and T.S.N. received support from the European Union Programme “Ideas” (ERC-2011-StG 282413 and ERC-2012-StG 310898).

Compliance with Ethical Standards

Conflict of Interest

Kristof Y. Neven, Tim S. Nawrot, and Valentina Bollati declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

40572_2017_130_MOESM1_ESM.docx (36 kb)
Appendix 1 (DOCX 35 kb)


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. This study provides an introduction on extracellular vesicles.CrossRefPubMedGoogle Scholar
  2. 2.
    Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20(5):847–56.CrossRefPubMedGoogle Scholar
  3. 3.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1847–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Wild CP. The exposome: from concept to utility. Int J Epidemiol. 2012;41(1):24–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on extracellular vesicles: physiological role and signalling properties of extracellular membrane vesicles. Int J Mol Sci. 2016;17(2):171.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20.PubMedGoogle Scholar
  8. 8.
    Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li CJ, Liu Y, Chen Y, Yu D, Williams KJ, Liu ML. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke. Am J Pathol. 2013;182(5):1552–62.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A. 2009;106(10):3794–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fendl B, Weiss R, Fischer MB, Spittler A, Weber V. Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry. Biochem Biophys Res Commun. 2016;478(1):168–73.CrossRefPubMedGoogle Scholar
  12. 12.
    Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101(36):13368–73.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT. Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One. 2010;5(1):e8577.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TS, et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med. 2012;10:5.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Admyre C, Grunewald J, Thyberg J, Gripenback S, Tornling G, Eklund A, et al. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J. 2003;22(4):578–83.CrossRefPubMedGoogle Scholar
  16. 16.
    Keller S, Rupp C, Stoeck A, Runz S, Fogel M, Lugert S, et al. CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 2007;72(9):1095–102.CrossRefPubMedGoogle Scholar
  17. 17.
    Ronquist G, Brody I, Gottfries A, Stegmayr B. An Mg2+ and Ca2+-stimulated adenosine triphosphatase in human prostatic fluid: part I. Andrologia. 1978;10(4):261–72.CrossRefPubMedGoogle Scholar
  18. 18.
    Lasser C, Alikhani VS, Ekstrom K, Eldh M, Paredes PT, Bossios A, et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011;9:9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Torrano V, Royo F, Peinado H, Loizaga-Iriarte A, Unda M, Falcon-Perez JM, et al. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer. Curr Opin Pharmacol. 2016;29:47–53.CrossRefPubMedGoogle Scholar
  20. 20.
    Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2.Google Scholar
  21. 21.
    • Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913. This study provides a thorough description of extracellular vesicles preparation.CrossRefPubMedGoogle Scholar
  22. 22.
    WHO. Public health, environmental and social determinants of health (PHE). 2015. Available from:
  23. 23.
    Lippmann M, Frampton M, Schwartz J, Dockery D, Schlesinger R, Koutrakis P, et al. The U.S. environmental protection agency particulate matter health effects research centers program: a midcourse report of status, progress, and plans. Environ Health Perspect. 2003;111(8):1074–92.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. AJRCCM. 2001;164(9):1665–8.Google Scholar
  25. 25.
    Mills NL, Amin N, Robinson SD, Anand A, Davies J, Patel D, et al. Do inhaled carbon nanoparticles translocate directly into the circulation in humans? AJRCCM. 2006;173(4):426–31.Google Scholar
  26. 26.
    Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the American heart association. Circulation. 2004;109(21):2655–71.CrossRefPubMedGoogle Scholar
  27. 27.
    Prado N, Marazuela EG, Segura E, Fernandez-Garcia H, Villalba M, Thery C, et al. Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol. 2008;181(2):1519–25.CrossRefPubMedGoogle Scholar
  28. 28.
    Kesimer M, Scull M, Brighton B, DeMaria G, Burns K, O’Neal W, et al. Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J. 2009;23(6):1858–68.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Orozco AF, Lewis DE. Flow cytometric analysis of circulating microparticles in plasma. Cytometry A. 2010;77(6):502–14.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A. The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol. 2010;26(4):140–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Emmerechts J, Jacobs L, Van Kerckhoven S, Loyen S, Mathieu C, Fierens F, et al. Air pollution-associated procoagulant changes: the role of circulating microvesicles. J Thromb Haemost. 2012;10(1):96–106.CrossRefPubMedGoogle Scholar
  32. 32.
    Bollati V, Angelici L, Rizzo G, Pergoli L, Rota F, Hoxha M, et al. Microvesicle-associated microRNA expression is altered upon particulate matter exposure in healthy workers and in A549 cells. J Appl Toxicol. 2015;35(1):59–67.CrossRefPubMedGoogle Scholar
  33. 33.
    Pavanello S, Bonzini M, Angelici L, Motta V, Pergoli L, Hoxha M, et al. Extracellular vesicle-driven information mediates the long-term effects of particulate matter exposure on coagulation and inflammation pathways. Toxicol Lett. 2016;259:143–50.CrossRefPubMedGoogle Scholar
  34. 34.
    Rodosthenous RS, Coull BA, Lu Q, Vokonas PS, Schwartz JD, Baccarelli AA. Ambient particulate matter and microRNAs in extracellular vesicles: a pilot study of older individuals. Part Fibre Toxicol. 2016;13:13.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cordazzo C, Petrini S, Neri T, Lombardi S, Carmazzi Y, Pedrinelli R, et al. Rapid shedding of proinflammatory microparticles by human mononuclear cells exposed to cigarette smoke is dependent on Ca2+ mobilization. Inflamm Res. 2014;63(7):539–47.CrossRefPubMedGoogle Scholar
  37. 37.
    Serban KA, Rezania S, Petrusca DN, Poirier C, Cao D, Justice MJ, et al. Structural and functional characterization of endothelial microparticles released by cigarette smoke. Sci Rep. 2016;6:31596.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fujita Y, Araya J, Ochiya T. Extracellular vesicles in smoking-related lung diseases. Oncotarget. 2015;6(41):43144–5.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Mobarrez F, Antoniewicz L, Bosson JA, Kuhl J, Pisetsky DS, Lundback M. The effects of smoking on levels of endothelial progenitor cells and microparticles in the blood of healthy volunteers. PLoS One. 2014;9(2):e90314.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Verma VK, Li HY, Wang RS, Hirsova P, Mushref M, Liu YM, et al. Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles. J Hepatol. 2016;64(3):651–60.CrossRefPubMedGoogle Scholar
  41. 41.
    Saha B, Momen-Heravi F, Kodys K, Szabo G. MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages. J Biol Chem. 2016;291(1):149–59.CrossRefPubMedGoogle Scholar
  42. 42.
    Momen-Heravi F, Saha B, Kodys K, Catalano D, Satishchandran A, Szabo G. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Transl Med. 2015;13:261.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    • Eguchi A, Mulya A, Lazic M, Radhakrishnan D, Berk MP, Povero D, et al. Microparticles release by adipocytes act as “find-me” signals to promote macrophage migration. PLoS One. 2015;10(4):e0123110. This study provides a description of interaction between extracellular vesicles and immune system.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Eguchi A, Lazic M, Armando AM, Phillips SA, Katebian R, Maraka S, et al. Circulating adipocyte-derived extracellular vesicles are novel markers of metabolic stress. J Mol Med (Berl). 2016;94(11):1241–53.CrossRefGoogle Scholar
  45. 45.
    Hirsova P, Ibrahim SH, Krishnan A, Verma VK, Bronk SF, Werneburg NW, et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology. 2016;150(4):956–67.CrossRefPubMedGoogle Scholar
  46. 46.
    Heinrich LF, Andersen DK, Cleasby ME, Lawson C. Long-term high fat feeding of rats results in increased numbers of circulating microvesicles with pro-inflammatory effects on endothelial cells. Br J Nutr. 2015;113(11):1704–11.CrossRefPubMedGoogle Scholar
  47. 47.
    Campello E, Zabeo E, Radu CM, Spiezia L, Foletto M, Prevedello L, et al. Dynamics of circulating microparticles in obesity after weight loss. Intern Emerg Med. 2016;11(5):695–702.CrossRefPubMedGoogle Scholar
  48. 48.
    Murakami T, Horigome H, Tanaka K, Nakata Y, Ohkawara K, Katayama Y, et al. Impact of weight reduction on production of platelet-derived microparticles and fibrinolytic parameters in obesity. Thromb Res. 2007;119(1):45–53.CrossRefPubMedGoogle Scholar
  49. 49.
    Stepanian A, Bourguignat L, Hennou S, Coupaye M, Hajage D, Salomon L, et al. Microparticle increase in severe obesity: not related to metabolic syndrome and unchanged after massive weight loss. Obesity. 2013;21(11):2236–43.CrossRefPubMedGoogle Scholar
  50. 50.
    Petrini S, Neri T, Lombardi S, Cordazzo C, Balia C, Scalise V, et al. Leptin induces the generation of procoagulant, tissue factor bearing microparticles by human peripheral blood mononuclear cells. Biochim Biophys Acta. 2016;1860(6):1354–61.CrossRefPubMedGoogle Scholar
  51. 51.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.CrossRefPubMedGoogle Scholar
  52. 52.
    Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol. 2013;22(1):11–7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Amer J, Ghoti H, Rachmilewitz E, Koren A, Levin C, Fibach E. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol. 2006;132(1):108–13.CrossRefPubMedGoogle Scholar
  54. 54.
    Sheller S, Papaconstantinou J, Urrabaz-Garza R, Richardson L, Saade G, Salomon C, et al. Amnion-epithelial-cell-derived exosomes demonstrate physiologic state of cell under oxidative stress. PLoS One. 2016;11(6):e0157614.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Atienzar-Aroca S, Flores-Bellver M, Serrano-Heras G, Martinez-Gil N, Barcia JM, Aparicio S, et al. Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells. J Cell Mol Med. 2016;20(8):1457–66.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.CrossRefPubMedGoogle Scholar
  57. 57.
    Smith JA, Leonardi T, Huang B, Iraci N, Vega B, Pluchino S. Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases. Biogerontology. 2015;16(2):147–85.CrossRefPubMedGoogle Scholar
  58. 58.
    Riley T, Yu X, Sontag E, Levine A. The p53HMM algorithm: using profile hidden markov models to detect p53-responsive genes. BMC Bioinf. 2009;10(1):111.CrossRefGoogle Scholar
  59. 59.
    Wang Z, Lieberman PM. The crosstalk of telomere dysfunction and inflammation through cell-free TERRA containing exosomes. RNA Biol. 2016;13(8):690–5.CrossRefPubMedGoogle Scholar
  60. 60.
    Wang Z, Deng Z, Dahmane N, Tsai K, Wang P, Williams DR, et al. Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes. Proc Natl Acad Sci U S A. 2015;112(46):E6293–300.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Brooks-Wilson AR. Genetics of healthy aging and longevity. Hum Genet. 2013;132(12):1323–38.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820(7):940–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Gabriel K, Ingram A, Austin R, Kapoor A, Tang D, Majeed F, et al. Regulation of the tumor suppressor PTEN through exosomes: a diagnostic potential for prostate cancer. PLoS One. 2013;8(7):e70047.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Principe S, Hui AB, Bruce J, Sinha A, Liu FF, Kislinger T. Tumor-derived exosomes and microvesicles in head and neck cancer: implications for tumor biology and biomarker discovery. Proteomics. 2013;13(10-11):1608–23.CrossRefPubMedGoogle Scholar
  65. 65.
    Wendler F, Favicchio R, Simon T, Alifrangis C, Stebbing J, Giamas G. Extracellular vesicles swarm the cancer microenvironment: from tumor-stroma communication to drug intervention. Oncogene. 2016. doi: 10.1038/onc.2016.253.PubMedGoogle Scholar
  66. 66.
    Fruhbeis C, Frohlich D, Kuo WP, Kramer-Albers EM. Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci. 2013;7:182.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Russo I, Bubacco L, Greggio E. Exosomes-associated neurodegeneration and progression of Parkinson’s disease. Am J Neurodegener Dis. 2012;1(3):217–25.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Schneider A, Simons M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res. 2013;352(1):33–47.CrossRefPubMedGoogle Scholar
  69. 69.
    Kishore R, Garikipati VN, Gumpert A. Tiny shuttles for information transfer: exosomes in cardiac health and disease. J Cardiovasc Transl Res. 2016;9(3):169–75.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kristof Y. Neven
    • 1
  • Tim S. Nawrot
    • 1
  • Valentina Bollati
    • 2
    Email author
  1. 1.Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
  2. 2.EPIGET – Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly

Personalised recommendations