Advertisement

Current Environmental Health Reports

, Volume 4, Issue 1, pp 1–11 | Cite as

Air Pollution and Successful Aging: Recent Evidence and New Perspectives

  • Gali Cohen
  • Yariv GerberEmail author
Environment and Aging (A Peters, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Environment and Aging

Abstract

Purpose of Review

Worldwide demographic changes occurring in a relatively short period have led to a growing interest in the determinants of aging “successfully” and how to promote a healthier old age. As environmental exposures such as ambient air pollution are believed to play a role in the process of aging, they might represent one of the pathways turning potential successful agers to unsuccessful agers. We aimed to critically review the current epidemiological evidence of the associations between chronic exposure to ambient air pollution and several key determinants of unsuccessful aging and to identify specific populations of unsuccessful agers that are potentially more vulnerable to air pollution’s health effects.

Recent Findings

Epidemiologic evidence supports the association between air pollution and increased risk for several major chronic diseases, cognitive impairment, frailty, and decreased longevity—all important determinants of unsuccessful aging—as well as evidence for higher vulnerability among frail populations. However, several methodological shortcomings, including possible publication bias, lack of use of an adequate indicator of unsuccessful aging, limitations in exposure assessment, and residual confounding particularly due to socioeconomic status, hinder inference of causal relationship at this stage.

Summary

Future studies should use constructs such as frailty index to estimate successful aging, as well as integrate time activity patterns into the exposure assessment metric. Additionally, studies in low- and middle-income countries are needed.

Keywords

Chronic exposure to air pollution Successful aging Susceptible populations Frailty 

Notes

Acknowledgements

This research was supported by Research Grant Award No. PGA 1401 from the Environment and Health Fund, Israel. This work was performed in partial fulfillment of the requirements for a Ph.D. degree of Gali Cohen, Sackler Faculty of Medicine, Tel Aviv University, Israel.

Compliance with Ethics Guidelines

Conflicts of Interest

Gali Cohen and Yariv Gerber declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: ••Of major importance

  1. 1.
    National Institute on Aging WHO. Global health and aging 2011.Google Scholar
  2. 2.
    Bowling A, Dieppe P. What is successful ageing and who should define it? BMJ: British Medical Journal. 2005;331(7531):1548–51.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rowe JW, Kahn RL. Human aging: usual and successful. Science. 1987;237(4811):143–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Meng X, D’Arcy C. Successful aging in Canada: prevalence and predictors from a population-based sample of older adults. Gerontology. 2014;60(1):65–72. doi: 10.1159/000354538.CrossRefPubMedGoogle Scholar
  5. 5.
    Depp CA, Jeste DV. Definitions and predictors of successful aging: a comprehensive review of larger quantitative studies. Am J Geriatr Psychiatry. 2006;14(1):6–20. doi: 10.1097/01.JGP.0000192501.03069.bc.CrossRefPubMedGoogle Scholar
  6. 6.
    Hamid TA, Momtaz YA, Ibrahim R. Predictors and prevalence of successful aging among older Malaysians. Gerontology. 2012;58(4):366–70. doi: 10.1159/000334671.CrossRefPubMedGoogle Scholar
  7. 7.
    Geller AM, Zenick H. Aging and the environment: a research framework. Environ Health Perspect. 2005;113(9):1257–62. doi: 10.1289/ehp.7569.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fougère B, Vellas B, Billet S, Martin PJ, Gallucci M, Cesari M. Air pollution modifies the association between successful and pathological aging throughout the frailty condition. Ageing Res Rev. 2015;24, Part B:299–303. doi: 10.1016/j.arr.2015.09.004.CrossRefGoogle Scholar
  9. 9.
    Cosco TD, Prina AM, Perales J, Stephan BC, Brayne C. Operational definitions of successful aging: a systematic review. Int Psychogeriatr. 2014;26(3):373–81. doi: 10.1017/s1041610213002287.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen H, Goldberg MS, Villeneuve PJ. A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev Environ Health. 2008;23(4):243–97.PubMedGoogle Scholar
  11. 11.
    Peters R, Peters J, Booth A, Mudway I. Is air pollution associated with increased risk of cognitive decline? A systematic review. Age Ageing. 2015;44(5):755–60. doi: 10.1093/ageing/afv087.CrossRefPubMedGoogle Scholar
  12. 12.
    •• Baccarelli AA, Hales N, Burnett RT, Jerrett M, Mix C, Dockery DW, et al. Particulate air pollution, exceptional aging, and rates of centenarians: a nationwide analysis of the United States, 1980-2010. Environ Health Perspect. 2016; doi: 10.1289/ehp197. This is the first study to investigate the role of air pollution in the probability of exceptional aging (reaching the age of 85 years). The study shows interesting results and may contribute to future research in the field. Google Scholar
  13. 13.
    •• Pieters N, Janssen BG, Dewitte H, Cox B, Cuypers A, Lefebvre W, et al. Biomolecular markers within the core axis of aging and particulate air pollution exposure in the elderly : a cross-sectional study. Environ Health Perspect. 2015; doi: 10.1289/ehp.1509728. This study was the first to demonstrate an association between annual PM 2.5 concentrations and decreased telomere length and mitochondrial DNA content, which serve as markers for aging and aging-related diseases. Google Scholar
  14. 14.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360. doi: 10.1161/cir.0000000000000350.CrossRefPubMedGoogle Scholar
  15. 15.
    Cesaroni G, Forastiere F, Stafoggia M, Andersen ZJ, Badaloni C, Beelen R, et al. Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ. 2014;348:f7412. doi: 10.1136/bmj.f7412.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Stafoggia M, Cesaroni G, Peters A, Andersen ZJ, Badaloni C, Beelen R, et al. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project. Environ Health Perspect. 2014;122(9):919–25. doi: 10.1289/ehp.1307301.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Pope 3rd CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, et al. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation. 2004;109(1):71–7. doi: 10.1161/01.cir.0000108927.80044.7f.CrossRefPubMedGoogle Scholar
  18. 18.
    van Erp AM, Kelly FJ, Demerjian KL, Pope CA, Cohen AJ. Progress in research to assess the effectiveness of air quality interventions towards improving public health. Air Quality, Atmosphere & Health. 2012;5(2):217–30. doi: 10.1007/s11869-010-0127-y.CrossRefGoogle Scholar
  19. 19.
    Clancy L, Goodman P, Sinclair H, Dockery DW. Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study. Lancet. 2002;360(9341):1210–4. doi: 10.1016/s0140-6736(02)11281-5.CrossRefPubMedGoogle Scholar
  20. 20.
    Su C, Hampel R, Franck U, Wiedensohler A, Cyrys J, Pan X, et al. Assessing responses of cardiovascular mortality to particulate matter air pollution for pre-, during- and post-2008 Olympics periods. Environ Res. 2015;142:112–22. doi: 10.1016/j.envres.2015.06.025.CrossRefPubMedGoogle Scholar
  21. 21.
    Pascal M, Corso M, Chanel O, Declercq C, Badaloni C, Cesaroni G, et al. Assessing the public health impacts of urban air pollution in 25 European cities: results of the Aphekom project. Sci Total Environ. 2013;449:390–400. doi: 10.1016/j.scitotenv.2013.01.077.CrossRefPubMedGoogle Scholar
  22. 22.
    Peters A, Hampel R, Cyrys J, Breitner S, Geruschkat U, Kraus U, et al. Elevated particle number concentrations induce immediate changes in heart rate variability: a panel study in individuals with impaired glucose metabolism or diabetes. Particle and Fibre Toxicology. 2015:1–11. doi: 10.1186/s12989-015-0083-7.
  23. 23.
    Chen SY, Wu CF, Lee JH, Hoffmann B, Peters A, Brunekreef B, et al. Associations between long-term air pollutant exposures and blood pressure in elderly residents of Taipei city: a cross-sectional study. Environ Health Perspect. 2015;123(8):779–84. doi: 10.1289/ehp.1408771.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Mehta AJ, Zanobetti A, Koutrakis P, Mittleman MA, Sparrow D, Vokonas P, et al. Associations between short-term changes in air pollution and correlates of arterial stiffness: the Veterans Affairs Normative Aging Study, 2007-2011. Am J Epidemiol. 2014;179(2):192–9. doi: 10.1093/aje/kwt271.CrossRefPubMedGoogle Scholar
  25. 25.
    Bind MA, Peters A, Koutrakis P, Coull B, Vokonas P, Schwartz J. Quantile regression analysis of the distributional effects of air pollution on blood pressure, heart rate variability, blood lipids, and biomarkers of inflammation in elderly American men: the Normative Aging Study. Environ Health Perspect. 2016;124(8):1189–98. doi: 10.1289/ehp.1510044.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Delfino RJ, Tjoa T, Gillen DL, Staimer N, Polidori A, Arhami M, et al. Traffic-related air pollution and blood pressure in elderly subjects with coronary artery disease. Epidemiology. 2010;21(3):396–404. doi: 10.1097/EDE.0b013e3181d5e19b.CrossRefPubMedGoogle Scholar
  27. 27.
    Brook RD, Rajagopalan S, Pope 3rd CA, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78. doi: 10.1161/CIR.0b013e3181dbece1.CrossRefPubMedGoogle Scholar
  28. 28.
    Delfino RJ, Staimer N, Tjoa T, Polidori A, Arhami M, Gillen DL, et al. Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ Health Perspect. 2008;116(7):898–906. doi: 10.1289/ehp.11189.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bentayeb M, Simoni M, Baiz N, Norback D, Baldacci S, Maio S, et al. Adverse respiratory effects of outdoor air pollution in the elderly. Int J Tuberc Lung Dis. 2012;16(9):1149–61. doi: 10.5588/ijtld.11.0666.CrossRefPubMedGoogle Scholar
  30. 30.
    Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, et al. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013;14(13):1262–3.CrossRefPubMedGoogle Scholar
  31. 31.
    Baja ES, Schwartz JD, Wellenius GA, Coull BA, Zanobetti A, Vokonas PS, et al. Traffic-related air pollution and QT interval: modification by diabetes, obesity, and oxidative stress gene polymorphisms in the normative aging study. Environ Health Perspect. 2010;118(6):840–6. doi: 10.1289/ehp.0901396.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mordukhovich I, Kloog I, Coull B, Koutrakis P, Vokonas P, Schwartz J. Association between particulate air pollution and QT interval duration in an elderly cohort. Epidemiology. 2016;27(2):284–90. doi: 10.1097/ede.0000000000000424.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Bind MA, Baccarelli A, Zanobetti A, Tarantini L, Suh H, Vokonas P, et al. Air pollution and markers of coagulation, inflammation, and endothelial function: associations and epigene-environment interactions in an elderly cohort. Epidemiology. 2012;23(2):332–40. doi: 10.1097/EDE.0b013e31824523f0.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hampel R, Breitner S, Schneider A, Zareba W, Kraus U, Cyrys J, et al. Acute air pollution effects on heart rate variability are modified by SNPs involved in cardiac rhythm in individuals with diabetes or impaired glucose tolerance. Environ Res. 2012;112:177–85. doi: 10.1016/j.envres.2011.10.007.CrossRefPubMedGoogle Scholar
  35. 35.
    Lanzinger S, Breitner S, Neas L, Cascio W, Diaz-Sanchez D, Hinderliter A, et al. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes. Environ Res. 2014;134:331–8. doi: 10.1016/j.envres.2014.08.003.CrossRefPubMedGoogle Scholar
  36. 36.
    Clifford A, Lang L, Chen R, Anstey KJ, Seaton A. Exposure to air pollution and cognitive functioning across the life course - a systematic literature review. Environ Res. 2016;147:383–98. doi: 10.1016/j.envres.2016.01.018.CrossRefPubMedGoogle Scholar
  37. 37.
    Calderon-Garciduenas L, Reed W, Maronpot RR, Henriquez-Roldan C, Delgado-Chavez R, Calderon-Garciduenas A, et al. Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol. 2004;32(6):650–8. doi: 10.1080/01926230490520232.CrossRefPubMedGoogle Scholar
  38. 38.
    Ranft U, Schikowski T, Sugiri D, Krutmann J, Kramer U. Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environ Res. 2009;109(8):1004–11. doi: 10.1016/j.envres.2009.08.003.CrossRefPubMedGoogle Scholar
  39. 39.
    Weuve J, Puett RC, Schwartz J, Yanosky JD, Laden F, Grodstein F. Exposure to particulate air pollution and cognitive decline in older women. Arch Intern Med. 2012;172(3):219–27. doi: 10.1001/archinternmed.2011.683.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Schikowski T, Vossoughi M, Vierkotter A, Schulte T, Teichert T, Sugiri D, et al. Association of air pollution with cognitive functions and its modification by APOE gene variants in elderly women. Environ Res. 2015;142:10–6. doi: 10.1016/j.envres.2015.06.009.CrossRefPubMedGoogle Scholar
  41. 41.
    Colicino E, Wilson A, Frisardi MC, Prada D, Power MC, Hoxha M, et al. Telomere length, long-term black carbon exposure, and cognitive function in a cohort of older men: the VA Normative Aging Study. Environ Health Perspect. 2016; doi: 10.1289/ehp241.Google Scholar
  42. 42.
    •• Power MC, Adar SD, Yanosky JD, Weuve J. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: a systematic review of epidemiologic research. Neurotoxicology. 2016; doi: 10.1016/j.neuro.2016.06.004. This paper provides a comprehensive review of the current epidemiological evidence on air pollution exposure and dementia, as well as dementia-related outcomes, and emphasizes several important methodological challenges in the current literature. PubMedGoogle Scholar
  43. 43.
    Woo J, Leung J, Zhang T. Successful aging and frailty: opposite sides of the same coin? J Am Med Dir Assoc. 2016; doi: 10.1016/j.jamda.2016.04.015.Google Scholar
  44. 44.
    Myers V, Drory Y, Gerber Y. Clinical relevance of frailty trajectory post myocardial infarction. Eur J Prev Cardiol. 2014;21(6):758–66. doi: 10.1177/2047487312462828.CrossRefPubMedGoogle Scholar
  45. 45.
    Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. ScientificWorldJournal. 2001;1:323–36. doi: 10.1100/tsw.2001.58.CrossRefPubMedGoogle Scholar
  46. 46.
    Garcia-Esquinas E, Navas-Acien A, Perez-Gomez B, Artalejo FR. Association of lead and cadmium exposure with frailty in US older adults. Environ Res. 2015;137:424–31. doi: 10.1016/j.envres.2015.01.013.CrossRefPubMedGoogle Scholar
  47. 47.
    •• Myers V, Broday DM, Steinberg DM, Yuval DY, Gerber Y. Exposure to particulate air pollution and long-term incidence of frailty after myocardial infarction. Ann Epidemiol. 2013;23(7):395–400. doi: 10.1016/j.annepidem.2013.05.001. This is the only study that specifically investigated the association between chronic exposure to air pollution and frailty syndrome assessed by the frailty index. The authors observed a positive association between air pollution and frailty. CrossRefPubMedGoogle Scholar
  48. 48.
    Eckel SP, Louis TA, Chaves PH, Fried LP, Margolis AH. Modification of the association between ambient air pollution and lung function by frailty status among older adults in the Cardiovascular Health Study. Am J Epidemiol. 2012;176(3):214–23. doi: 10.1093/aje/kws001.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    •• Gerber Y, Myers V, Broday DM, Steinberg DM, Yuval KS, et al. Frailty status modifies the association between air pollution and post-myocardial infarction mortality: a 20-year follow-up study. J Am Coll Cardiol. 2014;63(16):1698–9. doi: 10.1016/j.jacc.2014.01.026. This is the first study to demonstrate an effect-modification of the association between chronic exposure to PM2.5 and post-MI mortality by frailty status, indicating a dose-response relationship between PM2.5 and mortality among frailer individuals only. CrossRefPubMedGoogle Scholar
  50. 50.
    Kunzli N, Medina S, Kaiser R, Quenel P, Horak Jr F, Studnicka M. Assessment of deaths attributable to air pollution: should we use risk estimates based on time series or on cohort studies? Am J Epidemiol. 2001;153(11):1050–5.CrossRefPubMedGoogle Scholar
  51. 51.
    Hoek G, Brunekreef B, Goldbohm S, Fischer P, van den Brandt PA. Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet. 2002;360(9341):1203–9. doi: 10.1016/s0140-6736(02)11280-3.CrossRefPubMedGoogle Scholar
  52. 52.
    Jerrett M, Finkelstein MM, Brook JR, Arain MA, Kanaroglou P, Stieb DM, et al. A cohort study of traffic-related air pollution and mortality in Toronto, Ontario,Canada. Environ Health Perspect. 2009;117(5):772–7. doi: 10.1289/ehp.11533.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sacks JD, Stanek LW, Luben TJ, Johns DO, Buckley BJ, Brown JS, et al. Particulate matter-induced health effects: who is susceptible? Environ Health Perspect. 2011;119(4):446–54. doi: 10.1289/ehp.1002255.CrossRefPubMedGoogle Scholar
  54. 54.
    Wong CM, Lai HK, Tsang H, Thach TQ, Thomas GN, Lam KB, et al. Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents. Environ Health Perspect. 2015;123(11):1167–72. doi: 10.1289/ehp.1408264.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Passarino G, De Rango F, Montesanto A. Human longevity: genetics or lifestyle? It takes two to tango. Immun Ageing. 2016;13:12. doi: 10.1186/s12979-016-0066-z.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Marmot M. Social determinants of health inequalities. Lancet. 2005;365(9464):1099–104. doi: 10.1016/s0140-6736(05)71146-6.CrossRefPubMedGoogle Scholar
  57. 57.
    Mackenbach JP, Stirbu I, Roskam AJ, Schaap MM, Menvielle G, Leinsalu M, et al. Socioeconomic inequalities in health in 22 European countries. N Engl J Med. 2008;358(23):2468–81. doi: 10.1056/NEJMsa0707519.CrossRefPubMedGoogle Scholar
  58. 58.
    Chetty R, Stepner M, Abraham S, et al. The association between income and life expectancy in the United States, 2001-2014. JAMA. 2016;315(16):1750–66. doi: 10.1001/jama.2016.4226.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    National Institute on Aging, National Institutes of Health, US Department of Health and Human Services, World Health Organization. 2011. Global health and aging. Available at http://www.nia.nih.gov/sites/default/files/global_health_and_aging.pdf.
  60. 60.
    Gordis L. Epidemiology. 5th ed. Elsevier; 2014.Google Scholar
  61. 61.
    Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, et al. A review and evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol. 2005;15(2):185–204. doi: 10.1038/sj.jea.7500388.CrossRefPubMedGoogle Scholar
  62. 62.
    Baxter LK, Dionisio KL, Burke J, Ebelt Sarnat S, Sarnat JA, Hodas N, et al. Exposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendations. J Expo Sci Environ Epidemiol. 2013;23(6):654–9. doi: 10.1038/jes.2013.62.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, et al. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ. 2008;42(33):7561–78. doi: 10.1016/j.atmosenv.2008.05.057.CrossRefGoogle Scholar
  64. 64.
    de Nazelle A, Seto E, Donaire-Gonzalez D, Mendez M, Matamala J, Nieuwenhuijsen MJ, et al. Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ Pollut. 2013;176:92–9. doi: 10.1016/j.envpol.2012.12.032.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sykes K, Moya J, Peñalva-Arana C, Phillips L, Gilbert SG. Aging: characteristics, exposure factors, epigenetics, and assessment of health risks of older adults. Toxicology and Risk Assessment. 2015. p. 1030–86.Google Scholar
  66. 66.
    Tuttle L, Meng Q, Moya J, Johns DO. Consideration of age-related changes in behavior trends in older adults in assessing risks of environmental exposures. J Aging Health. 2013;25(2):243–73. doi: 10.1177/0898264312468032.CrossRefPubMedGoogle Scholar
  67. 67.
    Setton E, Marshall JD, Brauer M, Lundquist KR, Hystad P, Keller P, et al. The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. J Expo Sci Environ Epidemiol. 2011;21(1):42–8. doi: 10.1038/jes.2010.14.CrossRefPubMedGoogle Scholar
  68. 68.
    Sahsuvaroglu T, Su JG, Brook J, Burnett R, Loeb M, Jerrett M. Predicting personal nitrogen dioxide exposure in an elderly population: integrating residential indoor and outdoor measurements, fixed-site ambient pollution concentrations, modeled pollutant levels, and time-activity patterns. J Toxicol Environ Health A. 2009;72(23):1520–33. doi: 10.1080/15287390903129408.CrossRefPubMedGoogle Scholar
  69. 69.
    Nieuwenhuijsen MJ, Donaire-Gonzalez D, Rivas I, de Castro M, Cirach M, Hoek G, et al. Variability in and agreement between modeled and personal continuously measured black carbon levels using novel smartphone and sensor technologies. Environ Sci Technol. 2015;49(5):2977–82. doi: 10.1021/es505362x.CrossRefPubMedGoogle Scholar
  70. 70.
    Hicken MT, Adar SD, Hajat A, Kershaw KN, Do DP, Barr RG, et al. Air pollution, cardiovascular outcomes, and social disadvantage: the multi-ethnic study of atherosclerosis. Epidemiology. 2016;27(1):42–50. doi: 10.1097/ede.0000000000000367.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gerber Y, Benyamini Y, Goldbourt U, Drory Y. Neighborhood socioeconomic context and long-term survival after myocardial infarction. Circulation. 2010;121(3):375–83. doi: 10.1161/circulationaha.109.882555.CrossRefPubMedGoogle Scholar
  72. 72.
    Hajat A, Diez-Roux AV, Adar SD, Auchincloss AH, Lovasi GS, O’Neill MS, et al. Air pollution and individual and neighborhood socioeconomic status: evidence from the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health Perspect. 2013;121(11–12):1325–33. doi: 10.1289/ehp.1206337.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Cakmak S, Dales RE, Rubio MA, Vidal CB. The risk of dying on days of higher air pollution among the socially disadvantaged elderly. Environ Res. 2011;111(3):388–93. doi: 10.1016/j.envres.2011.01.003.CrossRefPubMedGoogle Scholar
  74. 74.
    Koton S, Molshatzki N, Yuval, Myers V, Broday DM, Drory Y, et al. Cumulative exposure to particulate matter air pollution and long-term post-myocardial infarction outcomes. Prev Med. 2013;57(4):339–44. doi: 10.1016/j.ypmed.2013.06.009.CrossRefPubMedGoogle Scholar
  75. 75.
    Hernan MA. Beyond exchangeability: the other conditions for causal inference in medical research. Stat Methods Med Res. 2012;21(1):3–5. doi: 10.1177/0962280211398037.CrossRefPubMedGoogle Scholar
  76. 76.
    Kowal P. Ageing and adult health status in eight lower-income countries: the INDEPTH WHO-SAGE collaboration. Global Health Action, [S.l.], v. 3, Sep. 2010. ISSN 1654-9880. Available at: <http://www.globalhealthaction.net/index.php/gha/article/.
  77. 77.
  78. 78.
    Peters A. Susceptible subgroups: the challenge of studying interactions. Epidemiology. 2004;15(2):131–2.CrossRefPubMedGoogle Scholar
  79. 79.
    Huang YC, Ghio AJ. Controlled human exposures to ambient pollutant particles in susceptible populations. Environ Health. 2009;8:33. doi: 10.1186/1476-069x-8-33.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations